1. Let \(f(x) = -\frac{13}{12}x^2 + \frac{49}{12}x + 1. \) Verify that \(x = 4 \) is a periodic point. What is its prime period? What are the other points in its orbit? Use the multiplier theorem to determine if this a stable or unstable periodic orbit.

2. Define the following dynamical system: let the state space \(S = [0, 1] \), all numbers between 0 and 1. Let \(f \) be the function which takes the decimal representation, cuts off the first digit, and shifts everything left. [Example: \(f(0.1415926...) = (.415926...) \)].
 (a) What are all the fixed points of \(f \)? (In other words, which numbers which remain unchanged after applying \(f \) once?)
 (b) Describe all the periodic points of \(f \) of prime period 2?
 (c) Describe all points of \(f \) which are eventually periodic of any period? (Eventually periodic means that the iterates eventually repeat, though they may or may not repeat at first.)

3. Graph the following functions for a range of values of the parameter \(c \) to determine whether the bifurcation that occurs is a transcritical, tangent, or period-doubling bifurcation. Using Discrete Tool, estimate the precise value of \(c \) in each case where the bifurcation occurs.
 (a) \(f(x) = cx^2 \), as \(c \) varies between \(c = .3 \) and \(c = .4 \).
 (b) \(f(x) = x^2 - c \), as \(c \) varies between \(c = .6 \) and \(c = .9 \). [Focus on the fixed point that is smaller and negative.]
 (c) \(f(x) = cx(1-x)^2 \), as \(c \) varies between \(c = .8 \) and \(c = 1.2 \). [Focus on what happens near the fixed point at 0.]

4. Use Discrete Tool to:
 (a) estimate the location of the first 4 period-doubling bifurcations for \(f(x) = x^2 - \lambda \). For instance, \(\lambda_1 = .75 \). What is \(\lambda_2, \lambda_3, \lambda_4 \)?
 (b) estimate the location of the period 3 “window” in the chaotic region.

5. Water is dripping from a leaky faucet. The time between drips can be modeled by some (unknown) discrete dynamical system. There is a parameter \(\lambda \) associated with a dynamical system which is the tightness (marked by the number of turns) of the faucet handle. At first, you observe that the time between drips is constant at 1 second between drops. As you unscrew the faucet handle past the 1/4-turn mark, the drip times begin to exhibit period 2 behavior (e.g., 0.7, 0.9, 0.7, 0.9, seconds, etc.)

 We say that there is a bifurcation at \(\lambda_1 = 0.25 \) turns.
 Then as you unscrew the handle past the 1/2-turn mark, it begins to exhibit period 4 behavior. Hence we’ll say \(\lambda_2 = 0.5 \) turns.

 Although you don’t know the underlying dynamical system, you can still make predictions! Using Feigenbaum’s universal constant, estimate \(\lambda_3 \), the position of the handle at which the next period-doubling will occur.
 Now try this with a real faucet and see if you can observe period-doubling.