1. If φ and ψ are 1-forms in \mathbb{R}^3, the wedge product $\varphi \wedge \psi$ is a 2-form on \mathbb{R}^3 such that

$$(\varphi \wedge \psi)(v, w) = \varphi(v)\psi(w) - \varphi(w)\psi(v)$$

for all pairs v, w of tangent vectors in \mathbb{R}^3. Prove that $\varphi \wedge \psi$ is a skew-symmetric 2-form.

2. Let p be a point of a regular surface S, and let $x : U \subset \mathbb{R}^2 \to S$, $y : V \subset \mathbb{R}^2 \to S$ be two parameterizations of S such that $p \in x(U) \cap y(V) = W$. Show that the “change of parameters” $h = x^{-1} \circ y : y^{-1}(W) \to x^{-1}(W)$ is a diffeomorphism; that is, h is differentiable and has a differentiable inverse h^{-1}. In other words, if x and y are given by

$$x(u, v) = (x(u, v), y(u, v), z(u, v)),$$

$$y(\xi, \eta) = (x(\xi, \eta), y(\xi, \eta), z(\xi, \eta)),$$

then the change of coordinates h, given by

$$u = u(\xi, \eta) \quad v = v(\xi, \eta), \quad (\xi, \eta) \in y^{-1}(W),$$

has the property that the functions u and v have continuous partial derivatives of all orders, and the map h can be inverted, yielding

$$\xi = \xi(u, v) \quad \eta = \eta(u, v), \quad (u, v) \in x^{-1}(W),$$

where the functions ξ and η also have partial derivatives of all orders. Since

$$\frac{\partial(u, v)}{\partial(\xi, \eta)} \cdot \frac{\partial(\xi, \eta)}{\partial(u, v)} = 1,$$

this implies that the Jacobian determinants of both h and h^{-1} are continuous everywhere.

3. Show that, in the basis

$$e_i' = c_i^j e_j$$

the coefficients b_i' of a functional $B \in T_1^1(V)$ are expressed by the formula

$$b_i' = c_i^j b_j'.$$

4. Let

$$B = \begin{pmatrix} b_1^1 & \cdots & b_n^1 \\ \vdots & \ddots & \vdots \\ b_1^n & \cdots & b_n^n \end{pmatrix}, \quad x = \begin{pmatrix} x^1 \\ \vdots \\ x^n \end{pmatrix}, \quad \xi = (\xi_1, \ldots, \xi_n).$$

Show that $B' = C^{-1}BC$.

5. Express the following vector fields (i) in terms of the cylindrical frame field (with coefficients in terms of r, θ, and z) and (ii) in terms of the spherical frame field (with coefficients in terms of ρ, θ, φ).

(a) U_1
(b) Let \(O \) be all of \(E^3 \) except the \(z \) axis and the circle \(C \) of radius \(R \) in the \(xy \) plane. The toroidal coordinate functions \(\rho, \theta, \varphi \) are defined on \(O \) as suggested in figure 1, so that

\[
\begin{align*}
x &= (R + \rho \cos \varphi) \cos \theta \\
y &= (R + \rho \cos \varphi) \sin \theta \\
z &= \rho \sin \varphi.
\end{align*}
\]

If \(E_1, E_2, \) and \(E_3 \) are unit vector fields in the direction of increasing \(\rho, \theta, \) and \(\varphi, \) respectively, express \(E_1, E_2, \) and \(E_3 \) in terms of \(U_1, U_2, \) and \(U_3, \) and prove that it is a frame field.

(c) Classical vector analysis avoids the use of differential forms on \(\mathbb{R}^3 \) by converting 1-forms and 2-forms into vector fields by means of the following one-to-one correspondences.

\[
\begin{align*}
f_1 dx^1 + f_2 dx^2 + f_3 dx^3 &\leftrightarrow f_1 \varepsilon_1 + f_2 \varepsilon_2 + f_3 \varepsilon_3 \\
f_1 dx^2 \wedge dx^3 + f_2 dx^3 \wedge dx^1 + f_3 dx^1 \wedge dx^2 &\leftrightarrow f_1 \varepsilon_1 + f_2 \varepsilon_2 + f_3 \varepsilon_3
\end{align*}
\]

Vector analysis uses three basic operations based on partial differentiation:

1. **Gradient** of a function \(f \):

\[
\text{grad}(f) = \sum_{i=1}^{3} \frac{\partial f}{\partial x^i} \varepsilon_i
\]

2. **Curl** of a vector field \(v = \sum_{i=1}^{3} v^i(x) \varepsilon_i \):

\[
\text{curl}(v) = \left(\frac{\partial v^3}{\partial x^2} - \frac{\partial v^2}{\partial x^3} \right) \varepsilon_1 + \left(\frac{\partial v^1}{\partial x^3} - \frac{\partial v^3}{\partial x^1} \right) \varepsilon_2 + \left(\frac{\partial v^2}{\partial x^1} - \frac{\partial v^1}{\partial x^2} \right) \varepsilon_3
\]

3. **Divergence** of a vector field \(v = \sum_{i=1}^{3} v^i(x) \varepsilon_i \):

\[
\text{div}(v) = \sum_{i=1}^{3} \frac{\partial v^i}{\partial x^i}
\]

Prove that all three operations may be expressed in terms of exterior derivatives as follows:

1. \(df \leftrightarrow \text{grad}(f) \)
2. If \(\varphi \) is a 1-form and \(\varphi \leftrightarrow v, \) then \(d\varphi \leftrightarrow \text{curl}(v). \)
3. If \(\eta \) is a 2-form and \(\eta \leftrightarrow v, \) then \(d\eta \leftrightarrow \text{div}(v) dx^1 \wedge dx^2 \wedge dx^3. \)

Show that the identities

\[
\text{curl(\text{grad}(f))} = 0
\]
\[
\text{div(\text{curl}(v))} = 0
\]

follow from the fact that \(d^2 = 0. \)

(d) Let \(f \) and \(g \) be real-valued functions on \(\mathbb{R}^2. \) Prove that

\[
df \wedge dg = \begin{vmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial g}{\partial x} & \frac{\partial g}{\partial y} \end{vmatrix} dx \wedge dy.
\]