Do each of the problems 1, 2, 6, 7, 8 and choose two problems out of 3, 4, 5. The left one will be the extra credit problem.

(1) Exercise 1, Chapter 7, Page 64 of Lax. Note: What Lax really meant to say there is:

\[\| x \| = \max \{ (x, y) : y \in K^n \text{ with } \|y\| = 1 \} \]

(2) Define \(\ell^2 = \left\{ \{z_k\}_{k=1}^{\infty} : z_k \in \mathbb{C} \text{ and } \sum_{k=1}^{\infty} |z_k|^2 < \infty \right\} \)

where for \(z = x + iy \), \(|z| = |x + iy| = \sqrt{x^2 + y^2} = \sqrt{z \cdot \overline{z}} \) where \(\overline{z} = x - iy \).

Define \((\cdot, \cdot) : \ell^2 \times \ell^2 \to \mathbb{C}\) by

\[(* : \{z_k\}_{k=1}^{\infty}, \{w_k\}_{k=1}^{\infty}) = \sum_{k=1}^{\infty} z_k \overline{w_k} \]

(a): Prove that \(\ell^2 \) is a linear space over \(\mathbb{C} \); that is, prove that \(\ell^2 \) is a subspace of \(\mathbb{C}^{\infty} \) as defined earlier this semester. (Note: You may assume the standard properties and results about infinite series.)

(b): Prove that the definition given in (*) gives \(\ell^2 \) as an inner product space.

(3) Exercise 2, Chapter 7, Page 66 of Lax. Note: You may assume that both \(\mathbb{C} \) and \(\mathbb{R} \) are complete and locally compact (i.e., any Cauchy sequence in \(\mathbb{C} \) or \(\mathbb{R} \) will be convergent and any bounded sequence in \(\mathbb{C} \) or \(\mathbb{R} \) will have a convergent subsequence.)

(4) Prove that \(\ell^2 \) is not locally compact. That is, show that there exists a bounded sequence in \(\ell^2 \) that has no convergent subsequence.

(5) Exercise 3, Chapter 7, Page 70 of Lax.

(6) Exercise 4, Chapter 7, Page 70 of Lax.

(7) Let \(X \) be an inner product space over \(\mathbb{C} \). Prove that for \(x, y \in X \)

\[|(x, y)| \leq \|x\| \cdot \|y\| \]

with equality \(\iff \) one of \(x \) or \(y \) is a scalar multiple of the other.

[Remark: As we discovered in class, we cannot directly use the idea of Lax’s proof of Schwarz’s Inequality, page 64. However, a minor modification in the proof will work. As a hint, let me suggest that you find a formula for \(c \in \mathbb{C} \) where \(x = cy \) with \(y \neq 0 \). If you follow this approach you will want to look at a quadratic polynomial where the variable of the polynomial only takes on real values.]

(8) Let \(X \) be an inner product space over \(\mathbb{C} \). Prove that for \(x, y \in X \)

\[\|x + y\| \leq \|x\| + \|y\| \]

with equality \(\iff \) one of \(x \) or \(y \) is a non-negative real scalar multiple of the other.