SOME PROPERTIES OF POSITIVE DERIVATIONS ON f-RINGS

Melvin Henriksen and F. A. Smith

1. INTRODUCTION

Throughout A denotes an f-ring; that is, a lattice-ordered ring that is a subdirect union of totally ordered rings. We let \(D(A) \) denote the set of derivations \(D : A \rightarrow A \) such that \(a \geq 0 \) implies \(Da \geq 0 \), and we call such derivations positive. In [CDKJ], P. Coleville, G. Davis, and K. Keimel initiated a study of positive derivations on f-rings. Their main results are (i) \(D \in D(A) \) and \(A \) archimedean imply \(D = 0 \), and (ii) if \(A \) has an identity element 1 and \(a \) is the supremum of a set of integral multiples of 1, then \(Da = 0 \). Their proof of (i) relies heavily on the theory of positive orthomorphisms on archimedean f-rings and gives no insight into the general case. Below, in Theorem 4 and its corollary, we give a direct proof of (i), and in Theorem 10, we generalize (ii). Throughout, we improve on results in [CDKJ], and we study a variety of topics not considered therein.

2. THE RESULTS

In the sequel, \(A \) will always denote an f-ring, and \(A^+ = \{ a \in A : a \geq 0 \} \) its positive cone. If \(a \in A \), let \(a^+ = a \vee 0 \), \(a^- = (-a) \vee 0 \), and \(|a| = a \vee (-a) \). Then \(a = a^+ - a^- \), \(|a| = a^+ + a^- \), and \(a^2 = a^- a^+ = a^+ a^- = 0 \). A subset I of \(A \) that is a ring ideal and such that \(|b| \leq |a| \), and \(a \in I \) imply \(b \in I \) is called an \(\ell \)-ideal. The \(\ell \)-ideals are the kernels of homomorphisms that preserve lattice as well as ring operations [BK, Chap. 8].

A derivation on \(A \) is a linear map \(D : A \rightarrow A \) such that if \(a, b \in A \), then \(D(ab) = abD + (Da)b \). A derivation \(D \) is called positive if \(D(A^+) \subseteq A^+ \). The family of all positive derivations on \(A \) will be denoted by \(D(A) \).
In any f-ring \(\text{rad} A \), the set of all nilpotent elements of \(A \), coincides with the intersection of all the prime \(\mathfrak{I} \)-ideals of \(A \), and hence is an \(\mathfrak{I} \)-ideal [BKW, 9.2.6]. If \(\text{rad} A = \{0\} \), then \(A \) is said to be reduced. In [CCDJ], it is shown that if \(A \) is commutative and \(a^n = 0 \), then \((Da)^{2n-1} = 0 \). We improve this result next. We begin by observing that if \(a, b, c \in A^+ \) then

\[(1) \quad ab = 0 \implies aDb = (Da)b = 0.\]

1. **PROPOSITION.** Suppose \(a \in A \) and \(D \in D(A) \). Then \(a^n = 0 \) implies \((Da)^n = 0 \). In particular, \(D\text{rad} A \subseteq \text{rad} A \).

PROOF. Since \(a^n = 0 \) if and only if \(|a|^n = 0 \), we may assume \(a \in A^+ \) and \(n > 1 \). By (1), \(a^{n-1}Da = 0 \). So \(a^{n-2}(aDa) = 0 \). Using (1) again yields \(0 = a^{n-2}D(aDa) = a^{n-1}Da + a^{n-2}(Da)^2 \). Since \(a \in A^+ \), \(a^{n-2}(Da)^2 = 0 \). Continuing this process yields \((Da)^n = 0 \) and hence that \(D\text{rad} A \subseteq \text{rad} A \).

The next example will show that the index of nilpotency of \(Da \) need not be less than that of \(a \). We note first that if \(D \in D(A) \) and \(I \) is an \(\mathfrak{I} \)-ideal of \(A \) such that \(D(I) \subseteq I \), then \(D_I \in D(A/I) \), where

\[D_I(a+I) = Da+I,\]

2. **EXAMPLE.** Let \(R \) denote all rational functions with real coefficients of negative degree. If \(r(x) = \frac{p(x)}{q(x)} \in R \), we may assume that \(q(x) = x^m + a_1x^{m-1} + \ldots \) has leading coefficient \(1 \), and we let \(r(x) \) be positive if the leading coefficient of \(p(x) \) is positive. With this order, \(R \) is a totally ordered ring. If \(r(x) \in R \), let \(Dr(x) = -r'(x) \) be the negative of the usual derivative. Then \(D \in D(R) \), as is \((xD): R \rightarrow R \), where \((xD)r(x) = xDr(x) = -xr'(x) \). If \(n \) is a positive integer, let \(I_n \) denote the set of all \(r(x) \) in \(R \) of degree \(\leq -n \). Clearly \(I_n \) is an \(\mathfrak{I} \)-ideal of \(R \), and \((xD)(I_n) \subseteq I_n \). If \(R_n = R/I_n \), and \((xD)_n(r(x)+I_n) = xDr(x) + I_n \), then \((xD)_n \in D(R_n) \), and \((xD)_n(\frac{1}{x}+I_n) = \frac{1}{x} + I_n \) is nilpotent of index \(n \).

If \(G \) is an abelian \(\mathfrak{I} \)-group, and \(T: G \rightarrow G \) is an order preserving endomorphism of \(G \) such that \(x \wedge y = 0 \) implies \(x \wedge Ty = 0 \) for \(x, y \) in \(G^+ \), then \(T \) is called a **positive orthomorphism** of \(G \). If \(A \) is reduced, then \(x \wedge y = 0 \) if and only if \(xy = 0 \) [BKW, 9.3.1].
So each positive derivation on an f-ring is an orthomorphism by (1). The next result appears implicitly in [CDKJ]. We include a proof for the sake of completeness.

3. PROPOSITION. If P is a minimal prime ℓ-ideal of A, and $D \in D(A)$, then $D(P) \subseteq P$. In particular, $D_P \subseteq D(A/P)$.

PROOF. As is noted in [BK, 9.3.2 and 12.1.11], if A is reduced, then each positive orthomorphism of $A(\mathbb{P})$ maps a minimal prime subgroup into itself, and P is a minimal prime ℓ-ideal of A if and only if it is a minimal prime subgroup. So $D(P) \subseteq P$ if A is reduced. In the general case, if we let $I = \text{rad } A$ in (2), we obtain $D(P) \subseteq P$.

We do not know if $D(P) \subseteq P$ for any prime ℓ-ideal of P.

Recall that A is said to be archimedean if $a \in A^+$ and $(na : n=1,2,\ldots)$ bounded above imply $a = 0$. The next theorem is the key to an alternate proof of the fact that a reduced archimedean f-ring admits no nontrivial derivations [CDKJ].

4. THEOREM. Suppose A is reduced, $D \in D(A)$, $a \in A^+$, and n is a positive integer. Then

(a) $n(a \cdot a^2)D_a \leq (a \cdot a^2)D_a$,

(b) $nD_a(a \cdot a^2) \leq D_a(a \cdot a^2)$, and

(c) $nD(a^2) \leq (a^2D_a + (Da)a^2) \vee Da$.

PROOF. Since A is reduced, (0) is an intersection of minimal prime ideals and A is a subdirect sum of totally ordered rings A/P such that P is a minimal prime ℓ-ideal. Thus, by Proposition 3, it suffices to verify these identities in case A is totally ordered and has no proper divisors of 0 [BK, 9.2.5]

Let $x = (na-a^2)^+D_a$. Then $x \in A^+$. We consider two cases:

(i) Suppose $x = 0$. Then $Da = 0$ or $na \leq a^2$. In either case we obtain

$$nD(a^2) \leq (a^2D_a + (Da)a^2) \vee Da$$

(ii) Suppose $x > 0$. Then $Da > 0$ and $a^2 < na$. Hence $aD_a + (Da)a \leq nD_a$. Since A is totally ordered, $aD_a \leq (Da)a$ or $(Da)a \leq a(Da)$.

Suppose the former holds. Then

$$2aD_a \leq nD_a$$

and hence $(na-2a^2)Da \geq 0$.

But $Da > 0$, so $2a^2 \leq na$. By induction, we get $2^k a^2 \leq na$ for $k = 0, 1, 2, \ldots$. If we choose k so large that $n^2 \leq 2^k$, we get

$$na^2 \leq a.$$

If, instead, $(Da)a \leq aDa$, an obvious modification of this latter argument also yields (4). Pre or post multiplying by Da yields

$$na^2 Da \leq aDa \quad \text{and} \quad n(Da)a^2 \leq (Da)a.$$

Since either (3) or (5) must hold in A/P for any minimal prime ideal P, the conclusions of (a) and (b) hold.

By (4), if $x > 0$, then $nD(a^2) \leq D(a)$. If $x = 0$, then adding the inequalities in (3) yields $nD(a^2) \leq (a^2 Da + (Da)a^2)$. Hence (c) holds as well.

5. COROLLARY. [CDK] If A is archimedean and $D \in D(A)$, then $D(A) \subseteq \text{rad } A$ and $D(A^2) = 0$.

PROOF. By (c) of the last theorem and Proposition 3, if $a \in A$, then $D(a^2) \subseteq \text{rad } A$. Since $aDa \leq D(a^2)$, $(Da)^2 \leq D(aDa) \leq D^2(a^2) \subseteq D(\text{rad } A) \subseteq \text{rad } A$ by Proposition 1. Since each element of $\text{rad } A$ is nilpotent, so is Da.

If $a, b \in A$, then $D(ab) = aDb + (Da)b = 0$, since $(\text{rad } A)A = A(\text{rad } A) = 0$ in an archimedean f-ring [BKW, 12.3.11]. Hence $D(A^2) = 0$.

5. PROPOSITION. Suppose $e^2 = e \in A$ and $D \in D(A)$.

(a) $((De))^2 = e(De)e = (De)(De) = 0$.

(b) If A is reduced or has an identity element or e is in the center of A, then $De = 0$.

PROOF. Since $e^2 = e$, we have

$$eDe + (De)e = De$$

Multiplying (6) on the left by e yields

$$eDe = 0.$$

Applying D to (7), we obtain

$$eD(De)e + (De)e = 0 = e(De)^2 + D(eDe)e.$$
Hence

\[(8) \quad e(De)^2 = (De)^2 = 0.\]

Multiplying both sides of (6) on the left by \(De\) and using (8) yields

\[(9) \quad (De)e(De) = (De)^2.\]

By (7), (8), and (9), we obtain

\[eDe - (De)e^2 + (De)e(De) = 0.\]

Hence \((De)^2 = (De)e(De) = 0\), which together with (7), completes the proof of (a).

Clearly \(De = 0\) if \(\text{rad } A = \{0\}\). If \(eDe = (De)e\), then by (6) and (7), \(De = 2eDe = 0\). If \(A\) has an identity element, then each of its idempotents is in the center of \(A\) by [BKWN, 9.4.201]. This completes the proof of (b).

The next example shows that the hypotheses of (b) above cannot be omitted.

7. EXAMPLE. A totally ordered ring with an idempotent \(e\) and a positive derivation \(D\) such that \(De \neq 0\).

Let \(S\) denote the algebra over the real field \(\mathbb{R}\) (with the usual order) with basis \(\{e, z\}\), where \(e^2 = e\), \(ez = z^2 = 0\), and \(ze = z\). If \(x = ae + bz \in S\), let \(x > 0\) if \(a > 0\) or \(a = 0\) and \(b > 0\). If we let \(Dx = z - xz = az\), then \(D \in \mathcal{D}(S)\), and \(De = z \neq 0\).

If \(D \in \mathcal{D}(A)\), let \(\ker D = \{a \in A : Da = 0\}\). If \(G\) is an abelian \(\ell\)-group and \(H \subseteq G\), let \(H^\perp = \{g \in G : |g| \cdot |h| = 0\ \text{for all } h \in H\}\), and let \(H^{\perp\perp} = (H^\perp)^\perp\). Note that \(H^\perp\) is an \(\ell\)-subgroup of \(G\) (that is, \(H\) is a subgroup and \(|a| \leq |b|\), and \(b \in H^\perp\) implies \(a \in H\)). A band in \(G\) is an \(\ell\)-subgroup \(H\) of \(G\) such that if \(K \subseteq H\) and \(\sup K \in G\), then \(\sup K \in H\). If \(H\) is a subset of \(G\), the intersection \(B(H)\) of all the bands in \(G\) containing \(H\) is also a band. Moreover, \(B(H) \subseteq H^{\perp\perp}\). See [ELZ, Theorem 19.2]. An element \(e\) of \(G\) such that \((e)^\perp = 0\) is called a weak order unit of \(G\). An element \(a\) of an \(\ell\)-ring \(A\) such that \(ex = 0\) or \(xe = 0\) implies \(x = 0\) is called regular. Note that if \(e \in A\) is regular, then \(e\) is a weak order unit, and the converse holds if \(A\) is reduced.
The following lemma will be useful in what follows.

8. **Lemma.** Suppose \(A \) is an \(\ell \)-ring and \(D \in D(A) \).

(a) \(xDx \leq (Dx)x \leq 0 \) for every \(x \in A \).

(b) If \(A \) is reduced, then \(D \) is an \(\ell \)-endomorphism.

(c) If \(A \) has an identity element \(1 \), and \(n \) is a positive integer, then \(nDx \leq xDx \leq (Dx)x \) for every \(x \in A^+ \) and \(D(1) = 1 \) for every \(\ell \)-ideal \(I \) of \(A \).

Proof. (a) holds since this inequality holds whenever \(A \) is totally ordered.

(b) holds since if \(A \) is reduced, then \(D \) is a positive orthomorphism and hence an \(\ell \)-endomorphism [BK1, 12.1].

(c) by Proposition 6(b), \(1 \in \ker D \), and by (a) \((x-n1)D(x-n1) \geq 0 \).

Hence \(nDx \leq xDx \). Similarly, \(nDx \leq (Dx)x \). Hence \(x \in I \) implies \(Dx \in I \) since \(I \) is an \(\ell \)-ideal.

Next, we provide some examples to show that the hypotheses of (b) and (c) above cannot be omitted.

9. **Examples.** (i) Let \(E \) denote the direct sum of two copies of the real line \(\mathbb{R} \) with trivial multiplication, and let \((r,s) \geq 0 \) mean \(r \geq s \geq 0 \). As is noted in EG1, 5B2, the map \(D: E \to E \) such that \(D(r,s) = (r,0) \) is a positive endomorphism that is not an \(\ell \)-homomorphism.

To see the latter, note that \((1,2)^+ = (2,2) \). So \(D(1,2)^+ = (2,0) \neq (1,0) = E(1,2)^+ \).

(ii) Let \(R \) and \((xD) \) be as in Example 2, and let \(y = \frac{1}{x} \). Then \(n(xD)y = \frac{n}{x} \), while \(y(xD)y = x^{-2} \), so the conclusion of (c) fails.

The next theorem summarizes most of what we know about kernels of positive derivations.

10. **Theorem.** Suppose \(D \in D(A) \), \(x \in A \), and \(n \) is a positive integer.

(a) If \(x \) is regular, and \(ex \in \ker D \), then \(x \in \ker D \).

(b) If \(A \) is reduced then:

(i) \(x \in \ker D \) implies \((x)^n \in \ker D \),

(ii) \(x^n \in \ker D \) implies \(x \in \ker D \),

(iii) \(\ker D \) is a band.
(iv) \(D^n = 0 \) implies \(D = 0 \), and
(v) \(e^2 = e \in A \) implies \(e \in \ker D \).

(c) If \(A \) has an identity element and \(U(A) \) is the smallest band containing the units of \(A \), then \(U(A) \subseteq \ker D \). In particular, \(\text{rad} A \subseteq \ker D \). Also, if \(x^2 \leq x \), then \(x \in \ker D \).

PROOF. (a) By (1), \(D(\text{ex}) = 0 \) implies \(eDx = 0 \), which, in turn implies \(Dx = 0 \).

(b) (i) By Lemma 8(b), and [BKW, 3.2.3], \(D((x)^{\perp}) \subseteq D((x)^{\perp} \perp) \perp \subseteq (Dx)^{\perp} \perp = \{0\} \) since \(x \in \ker D \) and \(A \) is reduced.

(ii) follows from (i) and the fact that \((x)^{\perp} \perp \) is the intersection of all the minimal \(\ell \)-ideals that contains \(x \) [BKW, 3.4.12].

(iii) As was noted above, the smallest band containing \(\ker D \) is contained in \(((\ker D)^{\perp})^{\perp} \) and the latter is contained in \(\ker D \) by (i).

(iv) Since \(x \) is a difference of positive elements, it suffices to show that \(Dx = 0 \) whenever \(x \in A^+ \). The proof will proceed by induction on \(n \). It is obvious when \(n = 1 \). Assume that \(D^n(A) = 0 \) implies \(D(A) = 0 \) whenever \(A \) is a reduced \(f \)-ring and \(n \geq 1 \) is an integer. If \(0 = D^{n+1}(A) = D^n(D(A)) \), then \(D^n(A^{\perp}) = 0 \) by (i).

So \(D(D(A)^{\perp}) = 0 \) by the induction hypothesis. In particular, \(D^2(x^2) = 0 \).

Since \(xDx \leq D(x^2) \), \(D = D(xDx) = xD^2x + (Dx)^2 \). So \((Dx)^2 = 0 = Dx \) since \(A \) is reduced.

(v) is a restatement of Proposition 16(b).

(c) That \(U(A) \subseteq \ker D \) follows directly from (a) and (b) (iii) above. If \(x^n = 0 \), then \((1-x)(1-x+n-1) = 1 \), so \(1-x \) is a unit and \(x = 1 - (1-x) \in U(A) \subseteq \ker D \). Finally, if \(x^2 \leq x \), then \(D(x^2) = xDx + (Dx)x \leq Dx \leq xDx \perp (Dx)x \) by Lemma 8(c). Hence \(xDx = (Dx)x = 0 \). Thus \(Dx = 0 \). This completes the proof of Theorem 10.

11. EXAMPLES AND REMARKS. The assumption that \(A \) is reduced in Theorem 10(b) cannot be dropped. For example, if \(A = \mathbb{C}[0,1] \), the \(\ell \)-group of continuous real-valued functions on \([0,1] \), with trivial multiplication for all \(f \in \mathbb{C}[0,1] \), we let \(Df = f(\frac{1}{2}) \), then \(D \in D(A) \), and \(\ker D \) fails to be a band [DV, p. 121]. Also, the plane \(E^2 \) with the usual coordinatewise addition and trivial multiplication admits positive endomorphisms that are nilpotent. (For example, let \(T(a,b) = (0,a) \) for all \((a,b) \in E^2 \).

Theorem 10(c) generalizes [CDK, Theorem 7] where it is shown that \(\ker D \) contains the supremum of any set of elements bounded above by some integral multiple of the identity element.
As in [5], we let \(I_0(A) = \{ a \in A : |a| < x \text{ for some } x \in A^+ \text{ and } n = 1, 2, \ldots \} \). Clearly \(I_0(A) \) is an \(\ell \)-ideal and \(I_0(A) = \{0\} \) if and only if \(A \) is archimedean.

12. THEOREM. Suppose \(D \in D(A) \).
 (a) If \(A \) is reduced, then \(D(A^2) \subseteq I_0(A) \).
 (b) If \(A \) has an identity element, then \(D(A) \subseteq I_0(A) \). If, moreover, \(A \) is reduced and \(I_0(A) \subseteq U(A) \), then \(D = 0 \).

PROOF. (a) follows immediately from Theorem 4 and the fact that \(ab < (a + b)^2 \) whenever \(a, b \in A^+ \).
 (b) That \(D(A) \subseteq I_0(A) \) is a restatement of Lemma 10(c). If \(I_0(A) \subseteq U(A) \), then by Theorem 10(c), \(D^2(A) = D(U(A)) = \{0\} \). Hence if \(A \) is reduced, then \(D = 0 \) by Theorem 10(b).

13. EXAMPLES AND REMARKS.
 (a) The reader may easily verify for the \(f \)-ring \(R \) of Example 2, \(I_0(R) = I_2 \), while \((x0)(R) = R \). So the hypothesis in Theorem 12(b) that \(A^+ \) has an identity element may not be dropped if we wish to have \(D(A) \subseteq I_0(A) \).
 (b) Let \(S \) denote the ring of all functions of the form

 \[
 f(x) = \sum_{i=0}^{\infty} a_i x^{r_i},
 \]

 where \(a_i \) is an integer and \(r_i \) is a nonnegative rational number, ordered lexicographically, with the coefficient of the largest power of \(x \) dominating. Then \(I_0(S) = S \), and \(U(A) \) is the set of constant polynomials. So, the condition of Theorem 12(b) fails. Despite this, \(D \in D(S) \) implies \(D = 0 \).

 For if \(D \in D(S) \), then \(D(x) = D(x^{1/2})^2 = 2x^{1/2}D(x^{1/4})^2 \)
 \[= 4x^{3/4}D(x^{1/8})^2 = \ldots = 2^n x^{1-1/2n}D(x^{1/2n}) \]
 Hence \(2^n | D(x) \) for \(n = 0, 1, 2, \ldots \). Since the coefficients of any element of \(S \) are integers, it follows that \(D(x) = 0 \). A similar argument will show that \(x^r \in \ker D \) whenever \(r \) is a nonnegative rational number. It follows that \(D = 0 \).

 We do not, however, know of any such example that is an algebra over an ordered field. If \(S^* \) is the result of allowing the coefficients of the elements of \(S \) to be arbitrary rational numbers, and we let \(D(x^r) = rx^r \) for any positive rational number \(r \), then \(D \) is a positive derivation. To see why, map \(x^r \) to \(e^{rx} \) and note that \(S^* \) is isomorphic as an ordered ring to a subring of the ring of exponential polynomials, and the usual derivative on the latter maps the image of \(S^* \) into itself.
Our last result applies more general theorems and techniques of Herstein \(H_j, H_2\) to the context of positive derivations.

14. **THEOREM.** Suppose \(A\) is reduced and \(D \in D(A)\).
 (a) If \(D \neq 0\), then the ring \(S\) generated by \(\{Da : a \in A\}\) contains a nonzero ideal of \(A\).
 (b) If \(S\) is commutative, then \(S\) is contained in the center of \(A\).
 (c) If \(z \in A\) commutes with every element of \(S\), \((az-za) \in \ker D\) for every \(a \in A\). If, in addition, \(A\) is totally ordered and \(D \neq 0\), then \(z\) is in the center of \(A\).

PROOF. (a) It is shown in \(H_j\) that the conclusion holds for any derivation on any ring if \(D^3 \neq 0\). Since \(A\) is reduced, \(D^3 \neq 0\) implies \(D \neq 0\) by Theorem 10(b).
 (b) Suppose \(a \in S\) and \(x \in A\). Then
 \[
 0 = (Da)D(ax) - D(ax)(Da) = Da[Da + (Da)x] - [Da + (Da)x]Da = Da(Da)x - x(Da).
 \]
 By \(H_2, \text{Lemma 1.1.4}\), \(Da\) is in the center of \(A\).
 (c) The second statement is shown in \(H_2\), and the first follows immediately from the second and Theorem 10(b).

BIBLIOGRAPHY

HARVEY MUDD COLLEGE
CLAREMONT, CALIFORNIA 91711

KENT STATE UNIVERSITY
KENT, OHIO 44242

PITZER COLLEGE
CLAREMONT, CALIFORNIA 91711