When is $C(X)/P$ a valuation ring for every prime ideal P?

Melvin Henriksen
Mathematics Department, Harvey Mudd College, Claremont, CA 91711, USA

Richard Wilson
Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico D.F. 09340, Mexico

Received 31 January 1990
Revised 23 September 1990

Abstract

A Tychonoff space X is called an SV-space if for every prime ideal P of the ring $C(X)$ of continuous real-valued functions on X, the ordered integral domain $C(X)/P$ is a valuation ring (i.e., of any two nonzero elements of $C(X)/P$, one divides the other). It is shown that X is an SV-space iff νX is an SV-space iff βX is an SV-space. If every point of X has a neighborhood that is an F-space, then X is an SV-space. An example is supplied of an infinite compact SV-space such that any point with an F-space neighborhood is isolated. It is shown that the class of SV-spaces includes those Tychonoff spaces that are finite unions of C^*-embedded SV-spaces. Some open problems are posed.

Keywords: Tychonoff space, SV-space, F-space, C^*-embedded, Stone–Čech compactification, real-closed ring, valuation ring, minimal prime ideal, ring of continuous real-valued functions.

AMS (MOS) Subj. Class.: 54C40, 06F25, 13A18.

1. **Introduction**

Throughout, X will denote a Tychonoff space. In [1], Cherlin and Dickmann call a (commutative) integral domain D real-closed if it is totally ordered, positive elements have square roots in D, each monic polynomial of odd degree in $D[x]$ has a zero in D, and if a, b in D satisfy $0 < a < b$, then a divides b. They show that for any prime ideal P of the ring $C(X)$ of continuous real-valued functions on X, $C(X)/P$ is real-closed if and only if it is a valuation ring; that is of any two elements in $C(X)/P$, one of them divides the other. A prime ideal P is called real-closed if...
$C(X)/P$ is real-closed. By the above, if P is an ideal of $C(X)$, P is real-closed if and only if whenever $f, g \in C(X)$ and $0 < g < f \mod P$, there is a $k \in C(X)$ such that $(g - kf) \in P$. After noting that every maximal ideal of $C(X)$ is real-closed, Cherlin and Dickmann examine conditions on X under which there are nonmaximal real-closed ideals.

While the focus in [1] is local, ours is global. We call $C(X)$ a survaluation ring, or an SV-ring if each of its prime ideals is real-closed. If $C(X)$ is an SV-ring, we call X an SV-space. In the sequel, we study the nature of SV-spaces and we improve on some of the results in [1]. In particular we show that X is an SV-space iff ωX is an SV-space iff βX is an SV-space, that C^*-embedded subspaces of SV-spaces are SV-spaces, and that finite unions of compact SV-subspaces are SV-spaces. Spaces that are local F-spaces in the sense of [2] are SV-spaces but the converse fails in a very strong sense.

The reader should not regard this paper as a continuation of [1] and we do not pretend that our results improve greatly on those in it. Instead we proceed in a rather different direction and are seeking ultimately a topological characterization of the algebraically defined notion of an SV-space. We regard this paper as a first step.

We close with some remarks and problems.

2. SV-spaces

As in [2], ωX denotes the Hewitt real-compactification of X, while βX denotes the Stone–Cech compactification of X; see [2] for unfamiliar definitions. Let $C^*(X)$ denote the subring of bounded elements of $C(X)$, and note that $C(\beta X)$ and $C^*(X)$ are isomorphic. The first proposition tells us that there is no loss of generality in concentrating on compact SV-spaces. To prove it, we will need the following facts established in [1].

(1) If P is a real-closed ideal of $C(X)$ and Q is a (proper) prime ideal containing P, then Q is real-closed.

As noted in [1], it follows from the fact that $C(X)/Q$ is a homomorphic image of $C(X)/P$. (If $\phi(f + P) = f + Q$, then ϕ is a homomorphism with kernel Q/P.)

An immediate consequence of (1) is:

Proposition 2.1. X is an SV-space if and only if every minimal prime ideal of $C(X)$ is real-closed.

Proposition 2.2. For any Tychonoff space X, the following are equivalent.

(a) X is an SV-space.

(b) ωX is an SV-space.

(c) βX is an SV-space.

Proof. The equivalence of (a) and (b) is immediate since $C(X)$ and $C(\omega X)$ are isomorphic.
In the proof of [3, Theorem 5.1], it is shown that the map \(P \to P \cap C^*(X) \) is a surjection of the set of minimal prime ideals of \(C(X) \) onto the set of minimal prime ideals of \(C^*(X) \), and in the proof of [1, Corollary 12], it is shown that \(P \) is a real-closed ideal of \(C(X) \) if and only if \(P \cap C^*(X) \) is a real-closed ideal of \(C^*(X) \). Since \(C(\beta X) \) and \(C^*(X) \) are isomorphic, this establishes the equivalence of (a) and (c). So the proposition holds. □

The next result is a minor modification of [1, Theorem 1], but its proof seems somewhat different.

Before stating it, we recall some general information from [2]. If \(f \in C(X) \), then let \(Z(f) = \{ x \in X : f(x) = 0 \} \) denote the zerorset of \(f \), and \(\text{coz } f = X \setminus Z(f) \) denote its cozerorset. Recall that a subspace \(Y \) of \(X \) is said to be \(C \)-embedded (respectively \(C^* \)-embedded) in \(X \) if the map that sends each \(f \) in \(C(X) \) (respectively in \(C^*(X) \)) to its restriction to \(Y \) is a surjection. Also, an ideal \(I \) of \(C(X) \) is called a \(z \)-ideal if whenever \(Z(f) = Z(g) \) and \(g \in I \), then \(f \in I \). Not every prime ideal is a \(z \)-ideal as noted in [2, Chapter 2], but every minimal prime ideal of \(C(X) \) is a \(z \)-ideal; see [3].

Theorem 2.3. If \(P \) is a prime \(z \)-ideal of \(C(X) \), then \(P \) is real-closed if and only if:

For each \(f \in C(X) \) and \(F \in C^*(\text{coz } f) \), there is a \(w \in P \) such that \(F|_{\text{coz } f \cap Z(w)} \) has a continuous extension over \(X \).

\((*) \)

Proof. Suppose first that \(P \) is real-closed. It suffices to show that \((*) \) holds for those \(f \in C(X) \) such that \(f \uparrow 0 \). Pick \(F \) in \(C^*(\text{coz } f) \) and assume without loss of generality that \(0 \leq F \leq 1 \).

Let \(h(x) = F(x)f(x) \) if \(x \in \text{coz } f \), and let \(h(x) = 0 \) if \(x \in Z(f) \). Then \(h \in C^*(X) \) and \(0 \leq h(x) \leq f(x) \) for all \(x \in X \). Since \(C(X)/P \) is a valuation ring, there is a \(w \in P \) and a \(k \in C(X) \) such that \(h = kf \) on \(Z(w) \). Since \(h = Ff \) on \(\text{coz } f \), it follows that \(k \) is a continuous extension of the restriction of \(F \) to \(\text{coz } f \cap Z(w) \) over \(X \). Hence \((*) \) holds.

Suppose conversely that \((*) \) holds for a prime ideal \(P \) of \(C(X) \), and \(0 \leq g \leq f \) mod \(P \). Then \(\{ x \in X : 0 \leq g(x) \leq f(x) \} = Z(u) \) for some \(u \in P \). Thus \(f \uparrow g = f \) on \(Z(u) \), so, since \(P \) is a \(z \)-ideal, we may assume without loss of generality that \(0 \leq g \leq f \) on \(X \). For this \(f \), let \(k = g/f \) on \(\text{coz } f \). By \((*) \), there is a \(w \in P \) such that the restriction of \(k \) to \(Z(w) \) has a continuous extension \(k \) over \(X \). Clearly \(g = kf \) mod \(P \), so \(P \) is real-closed. This completes the proof of the theorem. □

The next simple observation follows immediately from the definition of an SV-ring and Proposition 2.2.

Proposition 2.4. If \(C^*(X) \) is a homomorphic image of \(C^*(X) \) and \(X \) is an SV-space, then so is \(Y \). In particular, every \(C^* \)-embedded subspace of an SV-space is an SV-space.

It is shown in [1] that without making special set-theoretic assumptions, it is impossible to establish the existence of a nonmaximal real-closed ideal of \(C(X) \) if
X is a nondiscrete metrizable space, and that the one-point compactification $aN = N \cup \{\infty\}$ of the countable discrete space N cannot be an SV-space since not every minimal prime ideal is real-closed. So it follows from Proposition 2.4 that we have:

Corollary 2.5. An infinite SV-space contains no nontrivial convergent sequence.

Recall from [2, Chapter 14] that X is called an F-space if every cozeroset of X is C^*-embedded or, equivalently if finitely generated ideals of $C(X)$ are principal. It is noted there that if X is an F-space, then $C(X)/P$ is a valuation ring for every prime ideal P. Thus every F-space is an SV-space. More generally, it follows immediately from Theorem 2.3 that:

Corollary 2.6. If P is a prime z-ideal of $C(X)$ that contains a w such that $Z(w)$ is a C^*-embedded F-space, then P is real-closed.

The next result appears also in [1] and follows immediately from the fact that every prime ideal of $C(X)$ that is contained in the maximal ideal $M_p = \{f \in C(X): f(p) = 0\}$ contains, for each $p \in X$, the ideal $O_p = \{f \in C(X): p \in \text{Int} Z(f)\}$, and that every maximal ideal of $C(X)$ takes this form if X is compact; see [2, Chapter 4].

Corollary 2.7. If X is compact and $p \in X$ has a neighborhood that is an F-space, then any prime ideal contained in M_p is real-closed. Hence, if every point of X has a neighborhood that is an F-space, then X is an SV-space.

Recall that a point p of a space X is called a P-point if for each $f \in C(X)$, $f(p) = 0$ implies $p \in \text{Int} Z(f)$, and X is called a P-space if each of its points is a P-point. As is well known, a compact P-space is finite; see [2, Chapter 14]. In [1], an example is given of a compact SV-space with a point that has no neighborhood that is an F-space. Below, we derive that example and others to show that an SV-space can depart "sharply" from being an F-space. First we prove:

Theorem 2.8. If a Tychonoff space X is a finite union of C-embedded SV-spaces, then X is an SV-space. In particular, a compact space that is the union of finitely many closed SV-subspaces is an SV-space.

Proof. It suffices to prove the theorem in case $X = X_1 \cup X_2$ is the union of two C-embedded SV-spaces. If $f \in C(X)$, let $\phi_i(f)$ denote the restriction of f to X_i and observe that $\ker \phi_i = \{g \in C(X): g(X_i) = \{0\}\}$ for $i = 1, 2$. If P is a prime ideal of $C(X)$, then since $(\ker \phi_1)(\ker \phi_2) \subseteq (\ker \phi_1) \cap (\ker \phi_2) = \{0\}$, P contains one of these two ideals, say $\ker \phi_1$, and hence $P_1 = P/\ker \phi_1$ is a prime ideal of the ring $C(X)/\ker \phi_1$. Since X_1 is C-embedded in X, this latter ring is isomorphic to $C(X_1)$. Because the rings $C(X)/P$ and $(C(X)/\ker \phi_1)/(P/\ker \phi_1)$ are isomorphic, it follows that $C(X)/P$ and $C(X_1)/P_1$ are isomorphic; since X_1 is an SV-space $C(X_1)/P_1$ is
a valuation domain. Since \(P \) is an arbitrary prime ideal of \(C(X) \), \(X \) must be an SV-space. □

This enables us to give:

Example 2.9. A compact SV-space that fails to have an \(F \)-space neighborhood at any nonisolated point.

Let \(T \) denote the topological sum of two copies of \(\beta N \), and let \(X \) be obtained by identifying corresponding points of \(\beta N \setminus N \). Since \(\beta N \) is an \(F \)-space, it follows from the last theorem that \(X \) is an SV-space. Clearly each nonisolated point is in the closure of two (discrete) cozerosets, and hence has no neighborhood that is an \(F \)-space.

The example given in [1] of an SV-space that fails to be a local \(F \)-space is obtained by identifying two copies of a compact \(F \)-space at a non-\(P \)-point.

Much remains to be learned about SV-spaces, as the next and final section shows.

3. Remarks and problems

Remark 3.1. While the focus of the study of prime ideals of this paper is global, there are some local problems that seem pertinent. In [5] and in [1, Section 2.4], a point \(p \) of \(\beta X \) is called a \(\beta F \)-point if \(C(X)/O^p \) is a prime ideal (where \(O^p = \{ f \in C(X) : \text{there is a neighborhood } V \text{ of } p \text{ in } \beta X \text{ such that } Z(f) \supseteq V \cap X \} \)). It is shown in [2, Chapter 14] that \(X \) is an \(F \)-space if and only if every point of \(X \) is a \(\beta F \)-point. It is shown in Lemma 2 and Corollary 6 of [1, Section 2.4] that if \(p \) is a \(\beta F \)-point of \(X \), and \(f \in C(X) \), \(\text{coz}(f) \) is \(C^* \)-embedded in \((\text{coz}(f)) \cup \{ p \} \). So, if \(\{ p \} \) is also a \(G_s \), then \(X \setminus \{ p \} \) is \(C^* \)-embedded in \(X \), and it follows that if \(X \) is also compact, then \(p \) is isolated.

While some sufficient conditions are given in [1] for \(O^p \) to be real-closed, the following questions remain open.

Question 3.2. Suppose \(X \) is any (compact) space and \(O_p \) is prime. Does it follow that it is real-closed?

Question 3.3. Is there an SV-space with a \(G_s \)-point \(p \) such that \(O_p \) is prime but no neighborhood of \(p \) is an \(F \)-space?

Question 3.4. Is there a "global" version of Theorem 2.3? That is, is there a characterization of SV-spaces that does not refer to individual prime ideals?

Comment 3.5. At one time we had conjectured that for any prime \(z \)-ideal \(P \) of \(C(X) \) (where \(X \) is a Tychonoff space) \(P \) is real-closed if and only if:

For each \(f \in C(X) \), there is a \(w \in P \) such that \(\text{coz}(f) \cap Z[w] \) is \(C^* \)-embedded in \(X \).

\((\ast)\)
Clearly Theorem 2.3 implies that if (*) holds, then \(P \) is real-closed.

The referee observed that the converse fails, at least if Martin's axiom holds. For, in this case \(Y = \beta N \setminus N \) has a \(P \)-point \(p \). Let \(U = \{ K \subset N : p \in \text{Cl}_{\beta N} K \} \), and let

\[
P_U = \{ f \in C(\alpha N) : Z(f) \cap N \in U \}.
\]

In [1, Theorem 1, Section 3.1] it is shown that \(P_U \) is a (minimal prime) real-closed ideal of \(C(\alpha N) \). If \(j \) denotes the reciprocal of the identity function on \(N \), then it is clear that \(\text{coz} j \cap Z[w] = Z[w] \) is not \(C^* \)-embedded in \(\alpha N \) for any \(w \in P_U \). Thus (*) does not hold.

This counterexample is less than satisfying because of its dependence on Martin's axiom and because \(\alpha N \) is not an SV-space.

We call a space \textit{almost discrete} if it has exactly one nonisolated point. It is easy to verify that any almost discrete space is normal, and is perfectly normal if its nonisolated point is a \(G_\delta \).

\textbf{Question 3.6.} Which almost discrete spaces are SV-spaces?

\textbf{Note.} We have been able to show that an almost discrete space is an SV-space if and only if it is the union of finitely many closed basically disconnected subspaces; see [4].

\textbf{References}