Matchings in general graphs

We have a characterization of bipartite graphs with perfect matchings (Hall’s theorem). Is there a characterization of general graphs with perfect matchings?

Observation 1 If M is a matching in a graph G, each odd component of G must include at least one vertex not saturated by M.

Definition An odd component is a component of a graph with an odd number of vertices. We use $o(G)$ to denote the number of odd components of a graph G.

So given a matching M, the number of unsaturated vertices $\geq o(G)$.

This inequality can be extended by considering induced subgraphs of G.

Key idea: for any matching of graph G in Figure 2, at least one vertex in each odd component of $G - v$ must be matched to v. So at least two
vertices in G are unsaturated by any matching.
(Note that $o(G - v) = 3 > 1 = |\{v\}|$.)

Observation 2 If M is a matching in a graph G and $S \subseteq V(G)$, then any odd component in $G - S$ must have at least one vertex matched to a vertex in S, i.e.,

the number of unsaturated vertices $\geq o(G - S) - |S|$.

Theorem (Tutte). A graph G has a perfect matching if and only if

$$\forall S \subseteq V(G), \quad o(G - S) \leq |S|.$$

Tutte’s condition

Proof. (\Rightarrow) [Easy.] Suppose G has a perfect matching M. Let $S \subseteq V(G)$, and let G_1, G_2, \ldots, G_t be the odd components of $G - S$. Then there must be at least one edge in M from each G_i to S, so $|S| \geq t = o(G - S)$.

(\Leftarrow) [Hard.] Suppose $o(G - S) \leq |S|$ for all $S \subseteq V(G)$, but, for sake of contradiction, assume that G has no perfect matching. In fact, consider such a counterexample G with the maximum $\#$ of edges.

The special case of $S = \emptyset$ in Tutte’s condition implies that G has even $\#$ of vtcs in every component. Note that a complete graph on an even $\#$ of vtcs has a perfect matching, so G is not K_n, i.e., has less than $\binom{n}{2}$ edges.

Strategy: Show that, in fact, there is perfect matching in G.

Let $U = \{u \in V(G) : d(u) = n - 1\}$ where $n = |V(G)|$. (Since $G \neq K_n$, $U \neq V$.) We consider two cases.
Case 1: Every component of \(G - U \) is a complete graph.

Choose arbitrary perfect matchings of components of \(G - U \) (which are complete graphs), with odd components each having one vertex that is not yet saturated. Since \(o(G - U) \leq |U| \) and each vertex of \(U \) is adjacent to all vtc's of \(G - U \), we can match leftover vtc's of \(G - U \) to vtc's of \(U \).

Remaining vtc's of \(U \) that are unsaturated form a clique. We claim that there are an even # of such vtc's. We know \(G \) has an even # of vertices total. Furthermore, we have saturated an even # of vtc's, so there must be an even # of vtc's remaining. Thus, we can construct a perfect matching of \(G \). \(\Rightarrow \Leftarrow \)

Case 2: \(G - U \) has a component that is not a complete graph.

There must be a pair of vtc's in this component that are dist 2 apart, i.e. \(\exists \) vtc's \(x, y, z \) with \(x \sim y \sim z \) but \(x \not\sim z \).

Since \(y \not\in U \), we have \(d(y) < n - 1 \), so there exists a vertex \(w \) such that \(y \not\sim w \). (This means \(d(w) < n - 1 \) so \(w \not\in U \).)
Recall our previous assumption that G is a “maximum-edge-counter-example.” Note that Tutte’s condition is preserved under addition of edges. So adding any edge to G must yield a graph that has a perfect matching. (Otherwise, we have a larger counterexample than G.)

Let

\[M_1 = \text{perfect matching in } G + xz \]
\[M_2 = \text{perfect matching in } G + yw \]
\[H = (V, M_1 \triangle M_2). \]

Since M_1, M_2 are perfect matchings, all vtcs of H have degree 0 or 2, and so all components of H are even cycles and isolated vertices.

Need to find matching based on M_1, M_2 that does not use edges xz and yw but saturates the same vertices as M_1, M_2.

Case 2(a): xz and yw are in different components of H.

Let C be cycle of H containing yw (edge of M_2). Construct M as

\[M = \{ M_1 \text{ edges of } C \} \]
\[\cup \{ \text{all } M_2 \text{ edges not in } C \}. \]

Then M is a perfect matching of H and hence of G. \(\Rightarrow \Leftarrow \)
Case 2(b): *xz and yw are in same component of H.*

WLOG, assume that \(x/z \) are labeled so that \(x, y, w, z \) appear in that cyclic order on the cycle. Let

\[
M = \{M_1 \text{ edges on } (y, z)-\text{path via } w\} \\
\cup \{\text{all } M_2 \text{ edges not on that path}\} \cup \{yz\}.
\]

Then \(M \) is a perfect matching of \(H \) and hence of \(G \). \(\Rightarrow \Leftarrow \)

Tutte’s theorem can also be proved via Hall’s theorem.

Bottom-line:

- To show that \(G \) has a perfect matching, we exhibit one.
- To show that \(G \) does not have a perfect matching, we find a set \(S \) such that \(G - S \) has too many odd components.

Often Tutte’s theorem is used to show that a graph with some other condition that implies Tutte’s condition has a perfect matching.
Corollary (Petersen). Every 3-regular graph with no cut edge has a perfect matching.

Originally proved prior to Tutte’s theorem.

Outdated but nice language: Every cubic bridgeless graph has a perfect matching.

Proof. Let $G = (V, E)$ be a 3-regular graph without a cut edge, and consider any $S \subseteq V$. We want to show that $o(G - S) \leq |S|$.

Let H_1, \ldots, H_t be odd components of $G - S$, and let m_i be # of edges from S to H_i. Then

$$
\sum_{v \in V(H_i)} d(v) = \frac{3|V(H_i)|}{\text{odd}} \quad \text{since } G \text{ is 3-regular}
$$

$$
\sum_{v \in V(H_i)} d(v) = m_i + 2|E(H_i)| \implies m_i = \sum_{v \in V(H_i)} d(v) - 2|E(H_i)|.
$$

Since G has no cut edge, $m_i \neq 1$. Thus, since m_i is odd, $m_i \geq 3$. It follows that

$$
o(G - S) = t = \sum_{i=1}^{t} 1 \leq \frac{1}{3} \sum_{i=1}^{t} m_i
$$

$$
\leq \frac{1}{3} \sum_{v \in S} d(v)
$$

$$
= |S|.
$$

\blacksquare
Matchings in general graphs

Odd components of $G - U$

Even components of $G - U$

vts. of degree $n - 1$

even # of vts.