Hamiltonian graphs (continued)

Is the Grötzsch graph Hamiltonian?

Warmup problem

Review: Deciding whether a given graph is Hamiltonian is NP-complete, so it is natural to look for necessary or sufficient conditions for the existence of Hamiltonian cycles. Some examples we saw last class:

- components condition: \(c(G - S) \leq |S| \) (necessary)
- min degree large enough: \(\delta(G) \geq n/2 \) (sufficient)
- every pair of nonadjacent vtc\(s \) has degree sum \(\geq n \) (sufficient)
- if some pair of nonadjacent vtc\(s \) \(u, v \) have degree sum \(\geq n \), then \(G \) is Hamiltonian if and only if \(G + uv \) is Hamiltonian (necessary and sufficient, in a special case)

On a chessboard, a knight can move from one square to another that differs by 1 in one coordinate and by 2 in the other coordinate, as shown below. Prove that no \(4 \times n \) chessboard has a knight’s tour: a traversal by knight’s moves that visits each square once and returns to the start.

Problem

On a chessboard, a knight can move from one square to another that differs by 1 in one coordinate and by 2 in the other coordinate, as shown below. Prove that no \(4 \times n \) chessboard has a knight’s tour: a traversal by knight’s moves that visits each square once and returns to the start.
Solution Note that every neighbor of a white square in the top and bottom rows is a black square in the middle two rows. Therefore, if we delete the n black squares in the middle two rows, the white squares in the top and bottom rows become n isolated vtc's.

There remain $2n$ other vtc's in the graph, which must form at least one more component. Hence we have found a set S of n vtc's whose deletion leaves at least $n + 1$ components, which means that G cannot be Hamiltonian.

Definition The closure of a graph G, denoted $C(G)$, is defined recursively as follows:

- If G has no pair of nonadjacent vtc's u, v such that $d(u) + d(v) \geq n$, then set $C(G) = G$.
- Otherwise, let u, v be a nonadjacent pair of vtc's with $d(u) + d(v) \geq n$ and set $C(G) = C(G + uv)$.

Example

Does $C(G)$, for a given graph G, depend on the order in which we add edges? (In other words, is $C(G)$ well-defined?)
Lemma. For a graph G, $C(G)$ does not depend on the order in which we choose to add edges when more than one is available.

Proof. Suppose G_1 and G_2 are obtained as $C(G)$ from G by two different implementations of the closure procedure. Let $n = |V(G)|$.

Let e_1, e_2, \ldots, e_s and f_1, f_2, \ldots, f_t denote the sequences of edges added to G to make G_1 and G_2, respectively.

Claim: Every edge of G_1 is in G_2 and vice-versa, i.e., $e_i \in E(G_2)$ and $f_j \in E(G_1)$ $\forall i, j$.

Suppose not. Let $e_{k+1} = uv$ be the first edge of G_1 not in G_2. Consider graph H obtained from G by adding edges e_1, e_2, \ldots, e_k. Then

- $e_{k+1} \in E(G_1)$ implies that $d_H(u) + d_H(v) \geq n$,
- and H is a subgraph of G_2, so $d_{G_2}(u) \geq d_H(u)$ and $d_{G_2}(v) \geq d_H(v)$.

It follows that $d_{G_2}(u) + d_{G_2}(v) \geq d_H(u) + d_H(v) \geq n$. Thus, e_{k+1} should be an edge of G_2. $\Rightarrow\Leftarrow$

Therefore, $E(G_1) = E(G_2)$ and since G is a spanning subgraph of both G_1 and G_2, we have that $G_1 = G_2$ and $C(G)$ is well-defined. \blacksquare

Theorem (Bondy-Chvátal). Let G be a graph with $n \geq 3$ vtc$. Then G is Hamiltonian if and only if $C(G)$ is Hamiltonian.
Corollary. Let G be a graph with $n \geq 3$ vtcs. If $C(G)$ is a complete graph, then G is Hamiltonian.

This corollary can be used to derive other sufficient conditions for a graph to be Hamiltonian. For example, Chvátal extended Dirac’s theorem to a wider class of graphs (and the proof uses notion of closure of a graph).

Theorem (Chvátal). Let G be a graph with $n \geq 3$ vtcs and degree sequence $d_1 \leq d_2 \leq \cdots \leq d_n$. If there is no integer $k < \frac{n}{2}$ such that $d_k \leq k$ and $d_{n-k} < n - k$, then G is Hamiltonian.

Intuition: some vertex degrees can be small if others are large enough to compensate.
Long paths in digraphs

Theorem. Let D be a directed graph. Then D has a directed path of length $\chi(D) - 1$.

Remark. Note that the chromatic # of a directed graph is simply the chromatic # of the underlying undirected graph.

Proof. Let A be a minimum set of arcs so that $D' = D - A$ has no directed cycles. Let k be the length of a longest directed path in D'.

For each vertex v in D', if i is the length of a longest path that ends at v, color vertex v with color $i + 1$. This coloring uses $k + 1$ colors.

Claim: For any directed path P in D', the colors of the vertices in P are strictly increasing along the path.

To see this, let u, v be endpoints of P. Then any directed path that ends at u has no other vertex on P since D' is acyclic. Therefore, any path ending at u (including the longest one) can be extended by concatenating it with P. Thus, the colors increase along the path P.

This coloring is a proper coloring since for any arc (u, v) in $E(D)$, there is a directed path between u and v:

- either (u, v) in $E(D')$
- or there is a directed path from v to u in D'.

This implies that u and v cannot be assigned the same colors, since colors increase along any directed path in D'.
Therefore, \(\chi(D) \leq k + 1 \), or \(k \geq \chi(D) - 1 \). So \(D \) has a directed path of length \(\chi(D) - 1 \).

\[\blacksquare \]

Example

This result is best possible.

Proposition. Let \(G \) be a graph with \(\chi(G) = k \). Then there exists an orientation \(D \) of \(G \) so that the longest directed path in \(D \) has length \(k - 1 \).