Ramsey theory (continued)

Recall that we ended last class discussing bounds on diagonal Ramsey numbers, \(R(k, k) \).

Remarks

- We can approximate an upper bound for \(R(k, k) \) as follows:

\[
R(k, k) \leq \binom{2k - 2}{k - 1} < \frac{2^{2k-2}}{\text{all subsets of } \{1, \ldots, 2k-2\}} < 2^k = 4^k.
\]

Diagonal Ramsey numbers grow at most exponentially.

- To prove a lower bound on a Ramsey number, we need to construct a specific red/blue edge-coloring of a complete graph such that there is no red \(K_j \) or blue \(K_k \). In general, this is difficult.

- Erdös’ remarkable insight for a lower bound on \(R(k, k) \): consider a coloring at random and show that the probability that there is a monochromatic \(K_k \) is less than 1. (This is an example of the probabilistic method.)

Theorem (Erdös). Let \(k \geq 2 \). Then

\[
R(k, k) \geq 2^{k/2} = \left(\sqrt{2}\right)^k.
\]

Proof. Note that \(R(2, 2) = 2 = 2^2/2 \), so the result holds for \(k = 2 \); we proceed with the proof assuming that \(k \geq 3 \).
Suppose \(n < 2^{k/2} \). Consider a random red/blue edge-coloring of \(K_n \); that is, with probability \(\frac{1}{2} \), color edge red, and with probability \(\frac{1}{2} \), color edge blue. (Flip a fair coin to determine color.)

Note that

\[
P[\exists \text{ red } K_k] \leq \frac{\binom{n}{k} \left(\frac{n}{2} - \binom{k}{2} \right)}{2^{(\frac{n}{2})}} = \binom{n}{k} 2^{-\binom{k}{2}}.
\]

Thus, we have

\[
P[\exists \text{ red } K_k \text{ or } \exists \text{ blue } K_k] \leq P[\exists \text{ red } K_k] + P[\exists \text{ red } K_k]
\leq 2 \left[\binom{n}{k} 2^{-\binom{k}{2}} \right]
< 2 \frac{n^k}{k!} 2^{-\binom{k}{2}}
< 2 \frac{(2^{k/2})^k}{k!} 2^{-\binom{k}{2}} \quad \text{since } n < 2^{k/2}
= 2^{\frac{2^{k^2/2} - k(k-1)/2}{k!}}
= 2^{\frac{2^{k/2}}{k!}}.
\]

Let \(f(k) = 2^{\frac{2^{k/2}}{k!}} \). First, notice that

\[
\begin{align*}
f(3) &\approx 0.94, \\
f(4) &= \frac{1}{3}, \\
f(5) &\approx 0.094,
\end{align*}
\]
all of which are strictly less than 1.

Furthermore, since \(k! \geq \left(\frac{k}{2} \right)^{k/2} \), we have, for \(k \geq 6 \),

\[
f(k) = 2 \frac{2^{k/2}}{k!} \leq 2 \frac{2^{k/2}}{(\frac{k}{2})^{k/2}} = 2 \left(\frac{4}{k} \right)^{k/2} \leq 2 \left(\frac{2}{3} \right)^3 < 1.
\]

Thus, there is positive probability (> 0) that there exists neither a red \(K_k \) nor a blue \(K_k \). This implies there must exist a red/blue edge-coloring of \(K_n \) that contains neither a red \(K_k \) nor a blue \(K_k \) when \(n < 2^{k/2} \). Hence

\[
R(k, k) \geq 2^{k/2}.
\]

\[\blacksquare\]

Remark We have

\[2^{k/2} < R(k, k) < 2^{2k}\]

and if we look at the logarithms of these values, we have

\[
\frac{k}{2} < \log_2 R(k, k) < 2k
\]

which yields

\[
\frac{1}{2} < \frac{\log_2 R(k, k)}{k} < 2.
\]

A major open problem in Ramsey theory: does the following limit exist, and if so, what is its value?

\[
\lim_{k \to \infty} \frac{\log_2 R(k, k)}{k}.
\]

We consider a natural generalization of the Ramsey numbers.
Definition The *Ramsey number*, $R(p_1, p_2, \ldots, p_k)$, is the smallest integer n such that every k-edge coloring of K_n contains a complete subgraph of p_i vertices whose edges are all colored with color i for some i where $1 \leq i \leq k$.

The special case we previously examined is that of $k = 2, p_1 = j$, and $p_2 = k$.

Remarks

- The only known value of a multicolor (three colors or more) classical Ramsey number is $R(3, 3, 3) = 17$.

The only two 3-edge-colorings of K_{16} with no monochromatic K_3.

- Probably the most studied and intriguing open case is

 $51 \leq R(3, 3, 3, 3) \leq 62$.

- There is a generalization of a previous upper bound we proved last class (proof is a hmwk problem) : if $p_i \geq 2$ for all i,

 $R(p_1, \ldots, p_k) \leq -k + 2 + \sum_{i=1}^{k} R(p_1, \ldots, p_{i-1}, p_i - 1, p_{i+1}, \ldots, p_k)$.

We can generalize even further by looking for monochromatic subgraphs that need not be complete subgraphs.
Definition Given simple graphs G_1, \ldots, G_k, the *graph Ramsey number*, denoted $R(G_1, \ldots, G_k)$ is the smallest integer n such that every k-edge coloring of K_n contains a copy of G_i in color i for some i.

By “copy of G_i”, we mean a subgraph of G isomorphic to G_i.

Example We claim that $R(P_3, K_3) = 5$.

Consider any red/blue edge-coloring of K_5. Let v be any vertex.

Case 1: Vertex v is incident to at least two red edges. Then v with two neighbors along red edges form a red copy of P_3.

Case 2: Vertex v is incident to at most 1 red edge, so v is incident to at least 3 blue edges. Let x, y, z be neighbors of v along blue edges.

- If any pair amongst x, y, z have a blue edge between them, then that pair of vertices along with v form a blue K_3.
- Otherwise, x, y, z have all red edges between them and hence form a red P_3.

Thus, $R(P_3, K_3) \leq 5$.

To see that $R(P_3, K_3) > 4$, consider the red/blue edge-coloring of K_4 shown below:
contains neither a red P_3 nor a blue K_3

Selected known results

- $R(P_n, P_m) = n + \left\lfloor \frac{m}{2} \right\rfloor - 1$ for $n \geq m \geq 2$.

- $R(K_{1,n}, K_{1,m}) = \begin{cases} m + n - 1 & \text{if } m, n \text{ both even} \\ m + n & \text{otherwise.} \end{cases}$

- $R(T_n, K_m) = (n - 1)(m - 1) + 1$, where T_n is a tree on n vertices.