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Fundamental Lemma: Suppose that s < t, and X(s) and X(t) are ran-
dom variables defined on the same sample space such that X(t) − X(s) has a
distribution which is N(0, t − s). Then there exists a random variable X( t+s

2 )
such that X( t+s

2 ) − X(s) and X(t) − X( t+s
2 ) are independent with a common

N(0, t−s
2 ) distribution.

Proof: Let U = X(t) − X(s). Suppose V is independent of U and also has
a N(0, t − s) distribution. Define X( t+s

2 ) by the equations:

X(t) − X(
t + s

2
) =

U + V

2
,

X(
t + s

2
) − X(s) =

U − V

2
.

Thus in addition to U = X(t) − X(s) we also have

V = X(t) + X(s) − 2X(
t + s

2
)

or, equivalently,
X(t) + X(s)

2
− X(

t + s

2
) =

1
2
V.

Consequently, X( t+s
2 ) − X(s) and X(t) − X( t+s

2 ) have a common N(0, t−s
2 )

distribution. Furthermore, they are independent, since U + V and U − V are
uncorrelated. To see this, note that

E ((U + V )(U − V )) = E(U2) − E(V 2) = 0.

Construction of Standard Brownian Motion on [0,1]: Here’s the basic
idea. For every non-negative integer n we will construct a continuous path
Gaussian process {

B(n)(t) : 0 ≤ t ≤ 1
}

which agrees with standard Brownian motion on the binary rational points
{

k
2n

}
in [0, 1] and has the property that its value doesn’t change at these points when
n is increased to n + 1. That is,

B(n+1)(
k

2n
) = B(n+1)(

2k

2n+1
) = B(n)(

k

2n
)
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for k = 0, 1, . . . , 2n and n = 0, 1, 2, . . ..
We begin with a sequence of independent random variables{

V (1), V (
2k + 1
2n+1

) : k = 0, 1, . . . , (2n − 1), n = 0, 1, 2, . . .

}
where V (1) has a N(0, 1) distribution and each V ( 2k+1

2n+1 ) has a N(0, 1
2n ) distri-

bution. Thus, as examples, for n = 0 we have V ( 1
2 ) with a N(0, 1) distribution,

and for n = 1 we have V ( 1
4 ) and V ( 3

4 ) with N(0, 1
2 ) distributions.

The construction is done by strong induction. To begin the process we define
X(0) = 0 and X(1) = V (1). We next use the above lemma to construct X( 1

2 )
from X(1)−X(0) = V (1) and V ( 1

2 ) so that X( 1
2 )−X(0) and X(1)−X( 1

2 ) are
independent and each have a N(0, 1

2 ) distribution.
We now assume the strong induction hypothesis, namely: Suppose that for

some n ≥ 0, {
X(

k

2n
) : k = 0, 1, . . . , 2n

}
has been defined using {

V (
k

2n
) : k = 0, 1, . . . , 2n

}
in such a way that {

X(
k

2n
) − X(

k − 1
2n

) : k = 1, 2, . . . , 2n

}
are i.i.d. N(0, 1

2n ) random variables. Note that we have done this for n = 0 and
n = 1. Further, note that for j = 2k,

X(
j

2n+1
) = X(

2k

2n+1
) = X(

k

2n
)

has already been defined for k = 0, 1, . . . , 2n. Hence, for each k = 0, 1, . . . , 2n−1
we construct X( 2k+1

2n+1 ) using V ( 2k+1
2n+1 ) so that

X(
2k + 1
2n+1

) − X(
2k

2n+1
) = X(

2k + 1
2n+1

) − X(
k

2n
) and

X(
2k + 2
2n+1

) − X(
2k + 1
2n+1

) = X(
k + 1
2n

) − X(
2k + 1
2n+1

)

are N(0, 1
2n+1 ) random variables with{

X(
k

2n+1
) − X(

k − 1
2n+1

) : k = 1, 2, . . . , 2n+1

}
independent.
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Next, for n = 0, 1, 2, . . ., we define the process
{
B(n)(t) : 0 ≤ t ≤ 1

}
by let-

ting B(n)(t) = X(t) for t ∈
{

k
2n : k = 0, 1, . . . , 2n

}
and making B(n)(t) lin-

ear on each interval [ k
2n , k+1

2n ] for k = 0, 1, . . . , 2n − 1. Thus each process
{B(n)(t) : 0 ≤ t ≤ 1} is Gaussian (since for t in the interval [ k

2n , k+1
2n ],

B(n)(t) = X(
k

2n
) + 2n(t − k

2n
)[X(

k + 1
2n

) − X(
k

2n
)]

and hence is a linear combination of independent normal random variables).
Furthermore, this process has continuous sample paths. Define ∆(n)(t) =
B(n+1)(t) − B(n)(t) for 0 ≤ t ≤ 1. Then let

δ(n) = max
0≤t≤1

|∆(n)(t)| = max
0≤k<2n

max
t∈[ k

2n , k+1
2n ]

|∆(n)(t)|.

However, we see that

max
t∈[ k

2n , k+1
2n ]

|∆(n)(t)| =
∣∣∣∣12
(

X(
k + 1
2n

) + X(
k

2n
)
)
− X(

2k + 1
2n+1

)
∣∣∣∣

=
1
2

∣∣∣∣V (
2k + 1
2n+1

)
∣∣∣∣ ,

so that

δ(n) =
1
2

max
0≤k<2n

∣∣∣∣V (
2k + 1
2n+1

)
∣∣∣∣ .

In particular, this shows that δ(n) is a random variable with distribution the
same as 1/2 the maximum of the absolute value of 2n independent N(0, 1

2n )
random variables.

We now show that with probability one, {B(n)(t)} converges uniformly on
[0, 1]. The method is to show that with probability one,

{
B(n)(t)

}
is a Cauchy

sequence with respect to uniform convergence on [0, 1]. To see this, we first
estimate, for x > 0,

P

(
δ(n) >

x/2√
2n

)
= P

(
max

0≤k<2n

∣∣∣∣V (
2k + 1
2n+1

)
∣∣∣∣ /2 >

x/2√
2n

)
= P

(
2n−1∪
k=0

{∣∣∣∣V (
2k + 1
2n+1

)
∣∣∣∣ > x√

2n

})

≤
2n−1∑
k=0

P

(∣∣∣∣V (
2k + 1
2n+1

)
∣∣∣∣ > x√

2n

)
= 2nP (|Z| > x)
= 2n+1P (Z > x),

where Z has a N(0, 1) distribution. Consequently, if for n = 1, 2, 3, . . . we let
xn = 2

√
n and use the estimate

P (Z > xn) = 1 − Φ(xn) ≤ 1
xn

ϕ(xn) =
1

xn

√
2π

e−x2
n/2,
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we see that

P

(
δ(n) >

√
n√
2n

)
≤ 2n+1 1

2
√

2nπ
e−2n ≤ 1√

2π
(2/e2)n.

Therefore,
∞∑

n=1

P

(
δ(n) >

√
n√
2n

)
≤ 1√

2π

∞∑
n=1

(2/e2)n < ∞

and, hence,

P

(
{δ(n) >

√
n√
2n

} i.o.

)
= 0.

Consequently, with probability one, there is a N such that for all n > N we
must have δ(n) ≤

√
n√
2n

and thus, again with probability one,

∞∑
n=1

δ(n) < ∞.

However, if n < m, then, with probability one,

max
0≤t≤1

|B(m+1)(t) − B(n)(t)| ≤
∞∑

m=n

δ(m) → 0 as n → ∞.

Since the continuous functions on [0, 1] form a complete metric space with re-
spect to uniform convergence, limn→∞ B(n)(t) exists uniformly on [0, 1] and
represents a continuous function on [0, 1] with probability one. Thus we can
define {B(t) : 0 ≤ t ≤ 1} by

B(t) =
{

limn→∞ B(n)(t), when this limit exists uniformly on [0, 1]
0, otherwise (on a set of probability zero)

.
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