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Fundamental Lemma: Suppose that s < ¢, and X (s) and X (¢) are ran-
dom variables defined on the same sample space such that X (t) — X (s) has a
distribution which is N(0,¢ — s). Then there exists a random variable X (£*)
such that X (4£2) — X(s) and X (t) — X(4£2) are independent with a common
N(0, 152) distribution.

Proof: Let U = X (t) — X(s). Suppose V is independent of U and also has
a N(0,t — s) distribution. Define X (%) by the equations:

X -x(2Y = T
X( - x) = Y5
Thus in addition to U = X (t) — X (s) we also have
V:X(t)+X(s)—2X(HQ_S)
or, equivalently, )4 X . .
s s
UES (CRPEI

Consequently, X (%) — X(s) and X (t) — X(*) have a common N (0, 52)
distribution. Furthermore, they are independent, since U +V and U — V are
uncorrelated. To see this, note that

E((U+V)U-V))=EU?) - E(V?) =0.

Construction of Standard Brownian Motion on [0,1]: Here’s the basic
idea. For every non-negative integer n we will construct a continuous path
Gaussian process

{B(”)(t) 0<t< 1}

which agrees with standard Brownian motion on the binary rational points {2%}
in [0, 1] and has the property that its value doesn’t change at these points when
n is increased to n + 1. That is,

k 2k k

B(n+1)(27) = B("H)(W) = B(")(2—n)



for k=0,1,...,2" and n=20,1,2,....
We begin with a sequence of independent random variables

%+ 1
{V(l), V( ;:1 )ik =0,1,...,(2" — 1), n:0,1,2,...}

where V(1) has a N(0,1) distribution and each V(225 ) has a N(0, o) distri-
bution. Thus, as examples, for n = 0 we have V(1) with a N (0, 1) distribution,
and for n = 1 we have V() and V(2) with N(0, §) distributions.

The construction is done by strong induction. To begin the process we define
X(0) =0 and X (1) = V(1). We next use the above lemma to construct X (1)
from X (1) — X(0) = V(1) and V(3) so that X (%) — X(0) and X (1) — X(3) are
independent and each have a N (0, 3) distribution.

We now assume the strong induction hypothesis, namely: Suppose that for

some n > 0,
k
{X(Qn)k0717’2n}

{V(;):k:0,1,...,2”}

has been defined using

in such a way that

{X(;)X(kwl);km,..ﬂ"}

are ii.d. N(0, 5+) random variables. Note that we have done this for n = 0 and
n = 1. Further, note that for j = 2k,

j _ 2k k
2n+l) _X(2n+1) - X(QT)

X(

has already been defined for kK =0, 1,...,2". Hence, for each k =0,1,...,2" -1

we construct X (254 using V(25H) so that

2k +1 2k 2k +1 k
X( on+1 )_X(2n+1) = X( ont1 )_X(QTL) and
2k + 2 2k +1 k+1 2k +1
X( on+1 ) = X( on+1 ) = X( on ) = X( on+1 )

are N (0, W%) random variables with

k E—1 .
{X(Q"J"l)_X(Qn—o—l):k:1ﬂ2a---72 + }

independent.



Next, for n = 0,1,2,..., we define the process {B(”) t):0<t< 1} by let-
ting BM(t) = X(t) for t € {£ :k=0,1,...,2"} and making B™(t) lin-

ear on each interval [2%, k;l] for kK = 0,1,...,2" — 1. Thus each process
{BM(t):0 <t <1} is Gaussian (since for ¢ in the interval [, £EL],
n k n k k+1 k
BO(t) = X (o) + 2t — o)X (S 2) — X (o]

and hence is a linear combination of independent normal random variables).
Furthermore, this process has continuous sample paths. Define A (t) =
B (t) — B(™(t) for 0 <t < 1. Then let

6™ = max [AM™ ()] = max max |AM(2)].
0<t<1 0<k<2m tG[L k+1]

37 5 T

However, we see that

1 k+1 k 2k +1
(n) _ - A s
s A0 = b(x<%>+xgg) <2mlﬁ
1 2k +1
= 3 \ViGer))
so that ) —
(n) _ 1 2k +1
0 5 oax V(S|

In particular, this shows that 6(™ is a random variable with distribution the
same as 1/2 the maximum of the absolute value of 2" independent N (0, =)
random variables.

We now show that with probability one, {B()(t)} converges uniformly on
[0,1]. The method is to show that with probability one, { B™(t)} is a Cauchy
sequence with respect to uniform convergence on [0,1]. To see this, we first
estimate, for x > 0,

P((S(")>$/23n> = P<max

V(Q;LI)‘ /2> %)

P(U{red> )

0<k<2n

2n—1
2k +1 x
< > r(vih)s %)
k=0
= 2"P(|Z| > z)

2" P(Z > 1),

where Z has a N(0,1) distribution. Consequently, if for n = 1,2,3,... we let
x, = 2¢/n and use the estimate

1 1 2
PZ>x,)=1—®(z,) < —p(z,) = 76_:En/2’



we see that

Therefore,

Jh

) mZQ/

P<{5<"> ﬂ} zo) =0.

Consequently, with probability one, there is a N such that for all n > N we
must have §(") < % and thus, again with probability one,

i 5 < o0,
n=1

However, if n < m, then, with probability one,

and, hence,

(m+1) _ n(n) < (m)
Orgtagxl\B (t)—B"™ () < Zé — 0 asn— 0.

Since the continuous functions on [0, 1] form a complete metric space with re-
spect to uniform convergence, lim,, ., B (t) exists uniformly on [0,1] and
represents a continuous function on [0, 1] with probability one. Thus we can
define {B(t) : 0 <t <1} by

B(t) = lim,, oo B™)(t), when this limit exists uniformly on [0, 1]
N 0, otherwise (on a set of probability zero)



