Equivalence of the Axiom of Choice, the Well-ordering Theorem, and Zorn’s Lemma

H. Krieger, Mathematics 331, Harvey Mudd College
Fall, 2003

1 Definitions

Definition 1 A set S is partially ordered (by the relation \leq) \iff

1. $x \leq x$

2. $x \leq y$ and $y \leq x \implies x = y$

3. $x \leq y$ and $y \leq z \implies x \leq z$

Definition 2 Let S be partially ordered and let $B \subset S$.

1. x is an upper bound for $B \iff x \in S$ and $y \leq x$ for all $y \in B$.

2. x is the least upper bound (lub or sup) for $B \iff x$ is an upper bound for B and whenever z is an upper bound for B then $x \leq z$.

3. x is the last element (greatest element) of $B \iff x \in B$ and x is an upper bound for B.

4. x is a maximal element of $B \iff x \in B$ and whenever $y \in B$, $y \geq x$, then $y = x$.

There are corresponding definitions for lower bound, greatest lower bound (glb or inf), first element (smallest element), and minimal element.

Definition 3 A set S is linearly (totally) ordered (by the relation \leq) $\iff S$ is partially ordered (by the relation \leq) and $x \leq y$ or $y \leq x$ for all $x \in S$, $y \in S$ \iff

1. $x \leq y$ or $y \leq x$

2. $x \leq y$ and $y \leq x \implies x = y$

3. $x \leq y$ and $y \leq z \implies x \leq z$

A linearly ordered set is also called a chain.
Definition 4 A set S is well ordered (by the relation \leq) \iff S is partially ordered (by the relation \leq) and every non-empty subset of S has a first element \iff S is linearly ordered (by the relation \leq) and every non-empty subset of S has a first element.

Definition 5 A set S is inductively ordered (by the relation \leq) \iff S is partially ordered (by the relation \leq) and every linearly ordered subset (chain) in S has a least upper bound.

2 Theorem Statements

W.O.T. Every set can be well-ordered.

A.C.1. If S is a non-empty collection of disjoint non-empty sets S, then there is a set R which has as its elements exactly one element x from each set S in S.

A.C.2. If S is a non-empty collection of non-empty sets A, then there is a function $\varphi : S \rightarrow \bigcup\{A : A \in S\}$ such that $\varphi(A) \in A$ for all $A \in S$.

A.C.3. If I is a non-empty set and, for each $i \in I$, S_i is a non-empty set, then the cartesian product

$$\prod_{i \in I} S_i = \{f : I \rightarrow \bigcup\{S_i : i \in I\} : f(i) \in S_i \text{ for all } i \in I\}$$

is non-empty.

Z.L.1. If S is a partially ordered set such that each chain in S has an upper bound, then S has a maximal element.

Z.L.2. If S is inductively ordered, then S has a maximal element.

3 Equivalence of these Statements

A.C.3. \implies A.C.2. Since the cartesian product $\prod\{A : A \in S\}$ is non-empty, there is a function $\varphi : S \rightarrow \bigcup\{A : A \in S\}$ such that $\varphi(A) \in A$ for all $A \in S$.

A.C.2. \implies A.C.1. Since there is a function $\varphi : S \rightarrow \bigcup\{S : S \in S\}$ such that $\varphi(S) \in S$ for all $S \in S$ and the sets in in S are disjoint, the range R of φ is a set which has for its elements exactly one element from each set S in S.

A.C.1. \implies A.C.3. For each $i \in I$, the set $T_i = \{(i, x) : x \in S_i\}$ is non-empty. Thus the collection $S = \{T_i : i \in I\}$ is a non-empty collection of disjoint non-empty sets. Hence there is a set f which has as its elements exactly one element $(i, f(i))$ from each set T_i. Then $f : I \rightarrow \bigcup\{S_i : i \in I\}$ with $f(i) \in S_i$ for all $i \in I$. 2
Z.L.1. \implies Z.L.2. If S is inductively ordered, then every chain in S has an upper bound. Thus S has a maximal element.

Z.L.2. \implies Z.L.1. Suppose S is partially ordered and every chain in S has an upper bound. Let $T = \{C : C$ is a chain in $S\}$. Since $T \subset 2^S$ and 2^S is partially ordered by inclusion, so is T. If C_0 is a maximal element of T, then there is an upper bound x_0 for C_0. Then $x_0 \in C_0$ and x_0 is a maximal element of S. Hence our problem is reduced to showing that T has a maximal element. But if C is a chain in T and $C_0 = \cup\{C : C \in C\}$, then C_0 is the least upper bound of C. Hence T is inductively ordered which means T does have a maximal element.

W.O.T. \implies A.C.2. Let S be a non-empty collection of non-empty sets A.

Let $S = \cup\{A : A \in S\}$ and, then, well-order S. Hence each A is then a non-empty subset of the well-ordered set S. If $\varphi(A)$ is the first element of A, then $\varphi : S \rightarrow \cup\{A : A \in S\}$ such that $\varphi(A) \in A$ for all $A \in S$.

Z.L.2. \implies W.O.T. Let S be a set. For each subset A of S which can be well-ordered, let W_A be the collection of well-orderings of A and then let

$$W = \{(A, \leq_A) : A \subset S, \leq_A \in W_A\}.$$

Define a partial ordering on W by letting $(A, \leq_A) \leq (B, \leq_B)$

$$\iff A \subset B, \leq_A \leq_B |_A, \text{ and } a \in A, b \in B - A \implies a \leq_B b.$$

Now if C is a chain in W, $C = \{(C, \leq_C)\}$, let $C_0 = \cup\{C : (C, \leq_C) \in C\}$ and let $\leq_{C_0} = \cup\{\leq_C : (C, \leq_C) \in C\}$, i.e. if x and y are in C_0, then $x \leq_{C_0} y \iff x \leq_C y$ for some C such that $(C, \leq_C) \in C$. Then \leq_{C_0} is a well-ordering of C_0 and (C_0, \leq_{C_0}) is the least upper bound of C. Hence, W is inductively ordered which means that W has a maximal element. Let (A, \leq_A) be a maximal element of W. Then $A = S$, for if $S - A \neq \phi$, we consider $B = A \cup \{x\}$, where $x \in S - A$, and define \leq_B by $y \leq_B x$ for all $y \in A, \leq_B |_A = \leq_A$. However, in this case $(A, \leq_A) \leq (B, \leq_B)$ and $(A, \leq_A) \neq (B, \leq_B)$. Hence, $(S, \leq_S) \in W$ for some well-ordering \leq_S, i.e. S can be well-ordered.

Lemma: Let S be inductively ordered and let $f : S \rightarrow S$ such that $f(x) \geq x$ for every $x \in S$. Then there is an $x_0 \in S$ such that $f(x_0) = x_0$. In fact, if $a \in S$, there is an $x_0 \geq a$ such that $f(x_0) = x_0$.

Proof: Let $a \in S$ and let B_a be the collection of all subsets B of S such that

i) $a \in B$,
ii) $f(B) \subset B$,
iii) if C is a chain in B, then $\text{lub} \ C \in B$.

3
Note that B_a is not empty, since \(\{x : x \geq a\} \in B_a \). Let \(A = \cap \{B : B \in B_a\} \). Then it is easy to see that \(A \in B_a \). Our objective is to show that \(A \) is a chain, for then if \(x_0 = \operatorname{lub} A \), it follows that \(x_0 \in A \implies f(x_0) \leq x_0 \leq f(x_0) \), i.e. \(f(x_0) = x_0 \). The intuitive idea is that \(A \) consists only of \(a \) and its successive images under \(f \). Hence, we let
\[
P = \{p \in A : y \in A \text{ and } y < p \implies f(y) \leq p\}.
\]
Note that \(P \subset A \) but we would like to have equality. As a start, we show that if \(p \in P \) and \(z \in A \), then either \(z \leq p \) or \(z \geq f(p) \) (i.e. elements of \(P \) and \(A \) are comparable and there are no elements of \(A \) between \(p \) and \(f(p) \) if \(p \in P \)). To see this, let \(p \in P \) and let
\[
B(p) = \{z \in A : \text{ either } z \leq p \text{ or } z \geq f(p)\}.
\]
Then,
i) \(a \leq p \implies a \in B(p) \).

ii) If \(z \in A \) and \(z < p \), then \(f(z) \leq p \); if \(z \in A \) and \(z = p \), then \(f(z) = f(p) \geq f(p) \); if \(z \in A \) and \(z \geq f(p) \), then \(f(z) \geq z \geq f(p) \). Hence, \(z \in B(p) \implies f(z) \in B(p) \), i.e., \(\{B(p)\} \subset B(p) \).

iii) Let \(C \) be a chain in \(B(p) \) and let \(c_0 = \operatorname{lub} C \). Then \(c_0 \in A \). If \(c \leq p \) for all \(c \in C \), then \(c_0 \leq p \implies c_0 \in B(p) \). Otherwise, there is some \(c \in C \) such that \(c \geq f(p) \implies c_0 \geq c \geq f(p) \implies c_0 \in B(p) \). Thus \(c_0 = \operatorname{lub} C \in B(p) \). Consequently, \(B(p) \in B_a \) and, since \(B(p) \subset A \), we have \(B(p) = A \).

Now we can show that \(P = A \).

i) \(a \in P \) since there is no \(y \in A \) with \(y < a \).

ii) Let \(p \in P \). Suppose that \(y \in A \) and \(y < f(p) \). Note that \(f(p) \in A \).

Then we must have \(y \leq p \). If \(y < p \) then \(f(y) \leq p \), and if \(y = p \) then \(f(y) = f(p) \leq f(p) \). Hence \(f(p) \in P \), i.e., \(\{P\} \subset P \).

iii) Let \(C \) be a chain in \(P \). Then \(c_0 = \operatorname{lub} C \in A \). Suppose that \(y \in A \) and \(y < c_0 \). If \(y \in P \), then \(c_0 \geq f(y) \). Otherwise, for each \(c \in C \), either \(y < c \) or \(y \geq f(c) \geq c \). But we can’t have \(y \geq c \) for all \(c \in C \), since \(c_0 = \operatorname{lub} C \). Hence, for some \(c \in C \), \(y < c \implies f(y) \leq c \leq c_0 \).

Therefore, \(c_0 \in P \).

Consequently, \(P \in B_a \) and, since \(P \subset A \), we have \(P = A \). Finally, if \(x \in A \) and \(y \in A \), then either \(x \leq y \) or \(x \geq f(y) \geq y \) and hence \(A \) is a chain.

A.C.2. \(\implies \) Z.L.2. Let \(S \) be inductively ordered. Let \(S \) be the collection of all non-empty subsets of \(S \) and let \(\varphi : S \to \cup\{A : A \in S\} \) be a mapping with \(\varphi(A) \in A \) for all \(A \in S \). Define \(f : S \to S \) by letting \(f(x) = x \) if \(x \) is a maximal element and letting \(f(x) = \varphi(\{y : y > x\}) \) if \(x \) is not a maximal element. Then \(f(x) \geq x \) for all \(x \in S \). Hence by the lemma, there is an \(x_0 \in S \) such that \(f(x_0) = x_0 \). Then, \(x_0 \) must be a maximal element of \(S \).