If we describe your opponent’s strategy by letting x represent the first of her three successive results (either H or T), then her options reduce to the following 4 patterns: xxx, xxy, xyx, and xyy. So, you want to find the best strategy to counter each of these options and find the probability of winning in each of these situations.

1. xxx: Use yxx. In this case, the only way you can lose is if the first 3 tosses all produce an x. Otherwise, as long as a y occurs among the first 3 tosses, the pattern yxx must occur before the pattern xxx. So your probability of winning is $1 - 1/8 = 7/8$.

2. xxy: Again, use yxx. In this case, the only way you can lose is if the first 2 tosses each produce an x. Otherwise, as long as a y occurs among the first 2 tosses, the pattern yxx must occur before the pattern xxy. So your probability of winning is $1 - 1/4 = 3/4$.

3. xyx: Use xxy. Note that in this situation, nothing happens until the first x appears. Let p be the probability that your opponent wins from this position. There are two mutually exclusive ways this can take place. The first is that the next 2 tosses are yx, which has probability $1/4$. The second is that the next 2 tosses are yy, in which case nothing happens until the next x, and so this probability is $(1/4)p$. Note that if the next 2 tosses are either xy or xx, she cannot win because either xxy has appeared or xxy will appear before xyx in this case. Consequently, we have $p = 1/4 + (1/4)p$ which yields $p = 1/3$. So this strategy gives you a $2/3$ chance to win.

4. xyy: Again use xxy. This case is similar. Again, nothing happens until the first x appears. Let p be the probability that your opponent wins from this position. One way this can happen is if the next 3 tosses are yy which has probability $1/4$. The other way is that the next 2 tosses are yx, in which case the process starts over again, so the probability is $(1/4)p$. Once more, if the next 2 tosses are either xy or xx, she cannot win because either xxy has appeared or xxy will appear before xyy. Therefore, the same equation holds for p, namely $p = 1/4 + (1/4)p$, and thus $p = 1/3$. Using this strategy again produces a $2/3$ chance you will win.