Assignment Sheet#2

H. Krieger, Mathematics 159, Harvey Mudd College
Spring, 2005

Week of March 21, 2005: Measurable Functions (Random Variables) and Independence

• Reading: Read Chapter 3, noting that in class we have already given a different and more general proof of the assertion in Section 3.11, namely: the existence of a probability measure with a given distribution function. The results about properties of measurability, Section 3.2, and those on closure of the class of measurable functions with respect to a variety of operations, Sections 3.3 through 3.5, are very important. Another important section is 3.8 on the σ-algebra generated by a collection of functions. Sections 3.12 should be familiar, for example, from the Math 157 handout: “The Probability Transform and Simulation”. Sections 3.13 through (c) and 3.14 cover the more sophisticated material. Proofs of these important results are found in Appendix A.3. Continue reading in Chapter 4 through Section 4.8 on Markov chains. Section 4.7 on the existence of a sequence of independent random variables with prescribed distributions is very important.

• Problems to hand in: Due on Friday, April 1, 2005.

1. Let (Ω, F) be a measurable space and let $A \subset \Omega$. Show that A is \mathcal{F}-measurable, i.e. $A \in \mathcal{F}$, iff its indicator function $I_A : \Omega \to \mathbb{R}$ is \mathcal{F}-measurable, i.e. measurable with respect to \mathcal{F} and the Borel sets \mathcal{B} of \mathbb{R}.

2. Suppose (Ω, \mathcal{F}, P) is a probability space and $A \in \mathcal{F}$. If we let $p = P(A)$ and $q = 1 - p = P(A^c)$, describe the distribution of the indicator random variable I_A in terms of p and q. Find another probability space with a random variable that has the same distribution.

3. A random variable on the measurable space $(\mathbb{R}^n, \mathcal{B}_n)$ is called a Borel function on \mathbb{R}^n. Show that every monotone function on \mathbb{R} is a Borel function.

4. Exercise 3.13 (a) in Chapter 3.

5. Exercise E4.1 in Chapter E.

6. Exercise E4.2 in Chapter E.