Exercises on Distribution and Percentile Functions

H. Krieger, Mathematics 156, Harvey Mudd College

Fall, 2008

Throughout these exercises, unless otherwise specified, we let \(F \) be a distribution function and \(R = F^{-1} \) be the corresponding percentile function.

1. If \(X \) has an exponential distribution with mean \(\mu \), find \(F_X \) and \(R_X \) explicitly.

2. Show that for arbitrary distribution function \(F \), the percentile function \(R \) is always non-decreasing on \((0, 1)\) and continuous from below.

3. Show that \(p \leq F(R(p)) \) for every \(p \in (0, 1) \) and that \(R(F(x)) \leq x \) for every \(x \in \mathbb{R} \).

4. Consequently, show that \(R(F(R(p)))) = R(p) \) for every \(p \in (0, 1) \) and that \(F(R(F(x))) = F(x) \) for every \(x \in \mathbb{R} \).

5. Show that if \(X \sim F \) then, even if \(F \) is not continuous, \(R(F(X)) \sim X \). Hint: \(X \sim R(U) \) where \(U \sim U(0, 1) \).

6. For an explicit example of this, let

\[
P(X = -1) = 1/3 \text{ and } P(X = 2) = 2/3.
\]

Sketch the graphs of the corresponding distribution function \(F \) and percentile function \(R \). Then verify that \(X \sim R(U) \), where \(U \sim U(0, 1) \), and \(X \sim R(F(X)) \).

7. From above we know that if \(p = F(x) \) for some \(x \in \mathbb{R} \), i.e. \(p \) is in the range of \(F \), then \(F(R(p)) = p \). Show that this condition implies that \(p \) is a point of increase of \(R \). Here, \(p \) is a point of increase of \(R \) if and only if for every \(\varepsilon > 0 \), \(R(p + \varepsilon) - R(p - \varepsilon) > 0 \). Consequently, show that every \(p \in (0, 1) \) is a point of increase of \(R \) if \(F \) is continuous.

8. Similarly, we know that if \(x = R(p) \) for some \(p \in (0, 1) \), i.e. \(x \) is in the range of \(R \), then \(R(F(x)) = x \). Show that this condition implies that \(x \) is a point of increase of \(F \).
9. Suppose that \(R \) is a non-decreasing function on \((0, 1)\) which is continuous from below. We can extend \(R \) to \([0, 1]\) by taking limits from within \((0, 1)\) at the endpoints. To define an inverse for \(R \), we proceed as follows. If \(x < R(0) \) define \(R^{-1}(x) = 0 \). Otherwise, let \(R^{-1}(x) = \max\{ p : R(p) \leq x \} \). Show that \(R^{-1} \) is a distribution function. Also, show that if \(R = F^{-1} \) for some distribution function \(F \), then \(R^{-1} = F \).

10. A four-parameter family of distributions can be defined for certain values of these parameters by the percentile function

\(R(p) = \lambda_1 + [p^{\lambda_3} - (1 - p)^{\lambda_4}] / \lambda_2 \)

for \(p \in (0, 1) \). Here, \(\lambda_1 \) is a location parameter, \(\lambda_2 \neq 0 \) is a scale parameter, and \(\lambda_3 \) and \(\lambda_4 \) are shape parameters (they determine skewness and kurtosis).

(a) Since \(R \) is differentiable, first show that

\(R'(p) = [\lambda_3 p^{\lambda_3 - 1} + \lambda_4 (1 - p)^{\lambda_4 - 1}] / \lambda_2. \)

Then show that \(R \) is strictly increasing on \((0, 1)\) if and only if \(\lambda_3 \lambda_4 \geq 0 \), \(\lambda_3 + \lambda_4 \neq 0 \), and \(\text{sign}(\lambda_2) = \text{sign}(\lambda_3 + \lambda_4) \).

(b) Assuming these conditions are satisfied, plot the density function (parametrically, using e.g. Maple, Matlab, Mathematica) for the distribution with \(\lambda_1 = 0 \), \(\lambda_2 = 0.1975 \), and \(\lambda_3 = \lambda_4 = 0.1349 \).

Compare this plot with that of the standard normal density.

(c) Now suppose that \(X \sim R(U) \) where \(U \sim U(0, 1) \). Then, assuming that these moments exist, show that

\[
E(|X - \lambda_1|^k) = \int_0^1 |R(p) - \lambda_1|^k dp = \frac{\lambda_2^k}{A_k},
\]

where

\[
A_k = \sum_{j=0}^{k} \binom{k}{j} (-1)^j \beta(1 + (k - j)\lambda_3, 1 + j\lambda_4).
\]

Here, the beta function is defined for \(x > 0 \) and \(y > 0 \) by

\[
\beta(x, y) = \int_0^1 p^{x-1} (1 - p)^{y-1} dp = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x + y)},
\]

where the gamma function (generalized factorial) is defined for \(x > 0 \) by

\[
\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt.
\]

This function has the properties \(\Gamma(1) = 1 \) and \(x\Gamma(x) = \Gamma(x + 1) \) so that \(\beta(x, y) = \beta(y, x) \) and \(\beta(x, 1) = 1/x \).
(d) Show that when k is a positive integer, A_k exists if $\min\{\lambda_3, \lambda_4\} > -1/k$.

(e) Evaluate A_k for $k = 0, 1, 2$. Also, show that $m_1 = E(X) = \lambda_2^{-1} A_1 + \lambda_1$ and $\sigma^2 = \mu_2 = E([X - m_1]^2) = \lambda_2^{-2} (A_2 - A_1^2)$.

(f) Show that $A_2 - A_1^2 \geq 0$ and thus we can solve to obtain $\lambda_2 = \lambda_2^* / \sigma$, where $\lambda_2^* = \text{sign}(\lambda_3 + \lambda_4) \sqrt{A_2 - A_1^2}$ is the value of λ_2 assuming $\sigma^2 = 1$.

(g) Similarly, if λ_1^* is the value of λ_1 assuming $m_1 = 0$ and $\sigma^2 = 1$, $i.e.$ $\lambda_1^* = -A_1 / \lambda_2^*$, show that $\lambda_1 = m_1 + \lambda_1^* \sigma$.

3