Selected Topics in Fractional Graph Theory

by

Gregory Matthew Levin

A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland

1997
Abstract

We may formulate the chromatic number $\chi(G)$ of a graph G as follows: choose as few independent sets as possible such that every vertex of G is in at least one of the chosen sets. This is easily written as a $\{0, 1\}$-integer program. We define the fractional chromatic number $\chi_f(G)$ to be the value of the linear relaxation of this program. The integer dual of this program yields the clique number $\omega(G)$ of the graph, and we define fractional clique number $\omega_f(G)$ to be the value of the linear relaxation of the integer dual. By strong linear programming duality, $\omega(G) \leq \omega_f(G) = \chi_f(G) \leq \chi(G)$ for any finite graph.

We may equivalently write $\chi_f(G) = \lim_{b \to \infty} \chi_f(G)/b$, where $\chi_f(G)$ is the fewest total colors need in order to assign each vertex a set of b distinct colors disjoint from the color sets of its neighbors.

In Chapter 2, for infinite graph G, we define $\chi_f(G)$ to be the supremum of χ_f of all G’s finite subgraphs. We answer an open problem of Leader [8] by constructing infinite graphs for which $\chi_f < \chi_f < \infty$. Further, by showing that $\chi_f = \omega_f$, we disprove the result of strong duality for infinite graphs.

For Chapter 3, we define the fractional Ramsey number $r_f(x, y)$ simply by replacing ω with ω_f in the definition of ordinary Ramsey numbers. We derive an exact formula for $r_f(x, y)$, which is on the order of xy. We also consider a multi-color version and several relaxations of fractional Ramsey number.

In Chapter 4, we consider the fractional dimension of posets of trees. Fractional dimension comes from the linear relaxation of the integer programming formulation of ordinary dimension. The poset of a tree $T = (V, E)$ has ground set $V \cup E$ with ordering that puts
edges above their endpoints. We derive tight upper bounds for the fractional dimension of posets of stars, binary trees, general trees, and infinite trees.
Acknowledgments

First and foremost, I would like to thank my research advisor Ed Scheinerman. He introduced me to the field of Fractional Graph Theory, and all the problems addressed herein can be traced back to him. His continuous stream of ideas and keen eye for interesting problems kept me going throughout. He was, and continues to be, an inspiration and a pleasure to work with.

Thanks also to Lenore Cowen, who served as the second reader for this dissertation, and who helped me keep an eye on reality when I became distracted. Her advice and insight regarding the pitfalls and peculiarities of academia were greatly appreciated.

I wish to thank the rest of my dissertation committee: Professors Leslie Hall, Daniel Ullman and Jong-Shi Pang. I also wish to thank Professor John Wierman, Kay Lutz and Peggy Mackenzie, for helping me with something even more daunting than the research of a dissertation... all the red tape that goes along with it. And thanks to all the other members of the Math Sciences community at Hopkins for their friendship and support.

Moving backwards thru time now, I would also like to thank Professor Art Benjamin, my advisor at Harvey Mudd. He reminded me how much fun mathematics can be, and steered me towards Discrete Math and Johns Hopkins. And he let me draw funny pictures in his book. Further back, I would like to thank Donna Fea (now Donna Williams), who made high school math more of a pleasure than a chore. And finally, my eternal gratitude to John Jackson, who first showed me that math can fun, waaaaay back in 3rd grade, and set me on the academic path I’m still traveling.

Much love and gratitude to my parents for... well, the usual stuff, really... far too many...
things to mention here... but, basically, for being perfect parents in every way; well, okay, I have to at least mention all the weird cards they sent me. To Monique, for her love, support, inspiration and madness. And to Corinne, for giving my life new meaning and direction, here at the end of 22 years of school.
For Corinne

Contents

Abstract ii
Acknowledgments iv

1 Introduction 1
1.1 Definitions 2
1.2 Some Useful Facts 6
1.3 Overview of Results 9

2 The Fractional Chromatic Gap 11
2.1 Two Equalities for Infinite Graphs 12
2.2 Construction of Graphs with $\chi_f(G) < \chi_f(G) < \infty$ 15
2.3 The Behavior of $\chi_f(G)$ vs. $\chi_f(G)$ 23

3 Fractional Ramsey Numbers 27
3.1 The Value of $r_f(x, y)$ 28
3.2 Multicolor Fractional Ramsey Numbers 30
3.3 A Relaxation of Fractional Ramsey Numbers 46
3.4 b-Ramsey Numbers 49
3.5 Lovász-\varnothing Ramsey Numbers 54

4 Fractional Dimension of Posets from Trees 57
4.1 Fractional Dimension 58
4.2 Posets of Graphs 59
4.3 Posets of Trees and \dim_f for Posets of Stars 63
4.4 Upper Bound Calculations 70
4.5 The Tightness of Upper Bounds 76
4.6 Infinite Trees 85

5 Summary of Results and Open Problems 89

A Appendix: Leftovers 93
A.1 χ_f of Lexicographic Products 93
A.2 $\omega_f(G) = \lim_{b \to \infty} \frac{\omega(G)}{b}$ for Infinite Graphs 95

Bibliography 97
Vita 99
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ordinary and fractional colorings of C_5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>The circulant graph $C_{15,4}$</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>The graph $G_{r,3}^{2,3}$</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>The region $S_{2,1}$</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>Two graphs of the function $y = r_f(x, x)$</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>Independent sets I_i^p of H_i^p for $i = 2$ and $p = 2, 3, 4$</td>
<td>41</td>
</tr>
<tr>
<td>7</td>
<td>Complete ternary tree and contiguous linear extension</td>
<td>67</td>
</tr>
<tr>
<td>8</td>
<td>The five types of critical pairs</td>
<td>68</td>
</tr>
</tbody>
</table>
1 Introduction

Many graph invariants may be expressed as the solutions to constrained combinatorial optimization problems of the form “For the graph G, find the most (fewest) ___ such that ___.” For example, chromatic number (denoted $\chi(G)$) is found by solving “Find the fewest colors necessary such that each vertex may be assigned a color and no two adjacent vertices are assigned the same color.” For such invariants, we may define a corresponding fractional invariant, which is the solution to essentially the same problem, but we no longer require our solution to consist of whole pieces. In the case of fractional chromatic number (denoted $\chi_f(G)$), we solve the above problem, but now require only that each vertex get a total of one color, allowing a vertex to be colored $1/3$ red, $1/3$ blue and $1/3$ green (for example). We still require that no amount of the same color be placed on adjacent vertices. If no vertex gets more than $1/3$ of green, then green contributes $1/3$ to the “total” number of colors used.

To illustrate this, consider the 5-cycle, C_5. It is clear that $\chi(C_5) = 3$, as no odd cycle may be properly colored with only two colors (see Figure 1a). However, as illustrated in Figure
1b, we may color C_5 using 5 “half-colors”. No two adjacent vertices get any of the same color, and a total of $5/2$ colors are used, so $\chi_f(C_5) \leq 2.5$. (As with chromatic number, presenting a proper fractional coloring only proves an upper bound on fractional chromatic number; in fact, 2.5 is the correct value for $\chi_f(C_5)$.) Because ordinary and fractional invariants may be more precisely expressed as integer and linear programs, respectively, the duals of these programs define dual ordinary and fractional invariants, which are used in calculating lower bounds. Other fractional invariants may be defined in a manner similar to the above, but as the majority of this work concerns itself with fractional chromatic number (and its dual, fractional clique number), we shall limit ourselves to defining just these two in this introduction. We limit our attention to simple graphs throughout, and further assume graphs to be finite unless we specify otherwise.

1.1 Definitions

To express chromatic number as an integer program, we first need to restate its definition. A coloring of the vertices of a graph G is said to be proper if no two adjacent vertices receive the same color\(^1\). Thus, the set of all vertices which receive a particular color is necessarily an independent set. So a proper coloring of $V(G)$ may also be thought of as a covering (or partition) of $V(G)$ by (into) independent sets, and $\chi(G)$ the fewest independent sets needed to cover $V(G)$. Based on this, we may formulate $\chi(G)$ as an integer program. The constraint matrix M will be the vertex/independent set incidence matrix, with rows indexed by $V(G) = \{v_1, \ldots, v_n\}$, and columns indexed by the independent subsets of G.

\(^1\)Henceforth, “coloring” is to be understood as meaning “proper coloring”, since the subject of improper colorings does not come up in this dissertation.
\(V(G): \mathcal{I} = \{I_1, \ldots, I_m\} \). The \(i, j \) entry of \(M \) is a 1 exactly when \(v_i \in I_j \), and is 0 otherwise. Then

\[
\chi(G) = \min 1 \cdot x \quad \text{s.t.} \quad Mx \geq 1, \quad x \geq 0, \quad x \in \mathbb{Z}^m \quad \text{(IP)}
\]

where \(1 \) is the vector of all 1’s of appropriate length. The dual integer program for this is

\[
\omega(G) = \max 1 \cdot y \quad \text{s.t.} \quad M^T y \leq 1, \quad y \geq 0, \quad y \in \mathbb{Z}^n \quad \text{(ID)}
\]

This program finds the largest collection of vertices such that no two are in any independent set (i.e. all are adjacent), and therefore is a formulation of the clique number of \(G \) (denoted \(\omega(G) \)). We may now define the fractional chromatic and fractional clique numbers to be the solutions to the linear relaxations of the above integer programs:

\[
\chi_f(G) = \min 1 \cdot x \quad \text{s.t.} \quad Mx \geq 1, \quad x \geq 0, \quad x \in \mathbb{R}^m \quad \text{(LP)}
\]

\[
\omega_f(G) = \max 1 \cdot y \quad \text{s.t.} \quad M^T y \leq 1, \quad y \geq 0, \quad y \in \mathbb{R}^n \quad \text{(DP)}
\]

Feasible solutions to these LPs are called fractional colorings and fractional cliques, respectively. Since these two programs are dual, the strong duality result of linear programming tells us that \(\omega(G) \leq \omega_f(G) = \chi_f(G) \leq \chi(G) \) for any finite graph \(G \).

There is a different, though equivalent, way of defining fractional chromatic number. A (proper) \(b \)-fold coloring of \(V(G) \) is an assignment of a set of \(b \) colors to each vertex so that adjacent vertices receive disjoint color sets. We define the \(b \)-fold chromatic number, \(\chi_b(G) \), to be the number of colors in the smallest proper \(b \)-fold coloring of \(V(G) \). Because \(\chi_b(G) \) is a non-negative sub-additive function\(^2\) of \(b \), we know that

\[
\lim_{b \to \infty} \frac{\chi_b(G)}{b} = \inf_b \frac{\chi_b(G)}{b},
\]

\(^2\)By which we mean that \(\chi_{b+c}(G) \leq \chi_b(G) + \chi_c(G) \).
and more importantly, we have the following.

Lemma 1.1 For any finite graph G, $\chi_f(G) = \lim_{b \to \infty} \frac{\chi_b(G)}{b}$.

Proof. This result is most easily seen by thinking of $\chi_b(G)/b$ as a fractional coloring. Each color in a b-fold coloring still constitutes an independent set, so if we assign each such independent set a weight of $1/b$, every vertex gets covered by independent sets of total weight 1, and we have a fractional coloring of weight $\chi_b(G)/b$. Thus $\chi_f(G) \leq \chi_b(G)/b$ for all b, and $\chi_f(G) \leq \lim_{b \to \infty} \chi_b(G)/b$.

On the other hand, since $\chi_f(G)$ is the solution to a linear program with integer coefficients, there must be an optimal fractional coloring of $V(G)$ with rational weights. If we take b to be the least common denominator of all of these weights, then a reverse process (multiplying all weights by b) transforms this optimal fractional coloring into a proper b-fold coloring of weight $b \cdot \chi_f(G)$, so that $\chi_f(G) \geq \chi_b(G)/b$. Since the above limit is also an infimum, we are done. □

This also shows that $\chi_f(G) = \chi_b(G)/b$ for some b.

3 Based on [11].
An equivalent way of comparing these two definitions is to write

\[
\chi_b(G) = \min \mathbf{1} \cdot \mathbf{x} \text{ s.t. } M \mathbf{x} \geq b \cdot \mathbf{1}, \quad \mathbf{x} \geq 0, \quad \mathbf{x} \in \mathbb{Z}^m
\]

\[
\frac{\chi_b(G)}{b} = \min \mathbf{1} \cdot \mathbf{x} \text{ s.t. } M \mathbf{x} \geq \mathbf{1}, \quad \mathbf{x} \in \{0, \frac{1}{b}, \frac{2}{b}, \ldots, \frac{b}{b}\}^m
\]

We can see intuitively that, as \(b \to \infty \), the optimal solution to the latter program will approach that of the (LP) formulation of \(\chi_f(G) \). Of course, the above proof only works in the case that \(G \) is finite. The proof for the infinite case is similar, however, and is presented in Chapter 2.

We may define the \(b \)-fold clique number of a graph in an analogous fashion. For a graph \(G \), \(\omega_b(G) \) is the size of the largest multiset of vertices with the property that no independent set of \(G \) contains more than \(b \) members (counting repetition) of this multiset. A more convenient formulation is one similar to the discrete programming formulation presented above for \(\chi_b(G) \).

\[
\omega_b(G) = \max \mathbf{1} \cdot \mathbf{y} \text{ s.t. } M' \mathbf{y} \leq b \cdot \mathbf{1}, \quad \mathbf{y} \geq 0, \quad \mathbf{y} \in \mathbb{Z}^n
\]

\[
\frac{\omega_b(G)}{b} = \max \mathbf{1} \cdot \mathbf{y} \text{ s.t. } M' \mathbf{y} \leq \mathbf{1}, \quad \mathbf{y} \in \{0, \frac{1}{b}, \frac{2}{b}, \ldots, \frac{b}{b}\}^n
\]

This definition is presented for the sake of finding intermediate quantities between \(\omega \) and \(\omega_f \). As such, our real interest lies in the quantity \(\omega_b(G)/b \), which we henceforth refer to as the \textit{b-clique number}\(^4\) of \(G \), or \(\omega'_b(G) \). We refer to feasible solutions of the program defining \(\omega'_b(G) \) as \textit{b-cliques}. Similar to before, we have that \(\lim_{b \to \infty} \omega'_b(G) = \omega_f(G) \); the proof is analogous to that for \(\chi_f \), and is found in Appendix A. Finally, we note that \(\omega_f(G) \geq \omega'_b(G) \geq \omega(G) \) for all positive integers \(b \).

\(^4\)Not to be confused with the \textit{b-fold} clique number.
Other definitions of fractional chromatic and clique numbers involve a game-theoretic approach and covering/packing problems on hypergraphs. A full treatment of these, and all the above material, may be found in [11].

1.2 Some Useful Facts

We start with a general observation.

Lemma 1.2 The values of χ_f and ω_f don’t change if we reformulate their definitions by taking I to be the set of all maximal independent sets.

Proof. In an optimal solution of (LP), if any non-maximal independent set gets positive weight, we may reassign that weight to a maximal independent set containing it. We have not decreased the weight on any vertex, and the value of our solution has remained the same.

In the dual program (DP), if we only restrict the weight put on maximal independent sets by their vertices to be ≤ 1, then the weight put on any other independent set is necessarily also ≤ 1. □

In the following, we let $\alpha(G)$ denote the independence number of G, and let $[n] = \{1, 2, \ldots, n\}$.

Lemma 1.3 For any finite graph G on n vertices, $\omega_f(G) \geq n/\alpha(G)$; if G is vertex transitive, then equality holds.

Proof In the (DP) formulation of $\omega_f(G)$, let $y = \alpha(G)^{-1} \cdot 1$ (give every vertex weight $1/\alpha(G)$). No independent set can get total weight more than 1, so this solution is dual

5Based on [6].
feasible with value \(n/\alpha(G)\), and we have our inequality.

Let \(G\) be vertex transitive and let \(y\) be an optimal solution to \((\text{DP})\). Let \(\text{aut}(G)\) be the group of automorphisms on \(G\), with \(\pi \in \text{aut}(G)\). Let \(y_{\pi} = [y_{\pi(1)}, \ldots, y_{\pi(n)}]^T\). Note that \(y_{\pi}\) is also an optimal solution to \((\text{DP})\), and, in general, any convex combination of optimal solutions is still an optimal solution. In particular,

\[
y^* = \frac{1}{|\text{aut}(G)|} \sum_{\pi \in \text{aut}(G)} y_{\pi}
\]

is an optimal solution. But since \(G\) is vertex transitive, \(y^*\) must have all entries equal, so \(y^* = a \cdot 1\) is an optimal solution for some \(a\). But \(a\) can be no larger than \(1/\alpha(G)\) lest a largest independent set get total weight greater than 1, so the value of this solution (i.e. \(\omega_f(G)\)) can be no larger than \(n/\alpha(G)\), and we’re done. \(\square\)

The construction of \(y^*\) above provides a more general insight into the work to follow. Even if we only have a transitive subset \(S\) of \(V(G)\) (that is, for all \(u, v \in S\) there exists \(\pi \in \text{aut}(G)\) such that \(\pi(u) = v\)), we know that, without loss of generality, we may assign all vertices in \(S\) the same weight in a dual optimal solution. This observation is used repeatedly in the highly symmetric structures in this dissertation.

We next develop the class of circulant graphs, a generalization of cycles. The circulant graph \(\langle S \rangle_n\) on \(n\) vertices with \(S \subseteq \{1, 2, \ldots, [n/2]\}\) is described as follows. Imagine the vertices of \(\langle S \rangle_n\) to be equally spaced around a circle. Then if two vertices are \(d\) steps apart along the shorter arc of this circle, they are adjacent exactly if \(d \in S\). Thus \(S\) is the set of “connection distances” in \(\langle S \rangle_n\). Note that these graphs are vertex transitive, and that \(\overline{\langle S \rangle_n} = \langle \overline{S} \rangle_n\), where \(\overline{S} = \{1, 2, \ldots, [n/2]\} - S\). In particular, we let \(C_{n,m}\) denote \(\langle \overline{[m-1]} \rangle_n\), so that two vertices are adjacent if they are at least \(m\) steps apart. The invariants
Figure 2: The graph \(\overline{C_{15,4}} = \langle \{1, 2, 3\} \rangle_{15} \), with a maximum independent set of size \[\left\lceil \frac{15}{4} \right\rceil = 3 \] indicated.

\[\alpha(C_{n,m}) \text{ and } \omega(C_{n,m}) \text{ are easily determined, giving us the following (see [6]):} \]

Lemma 1.4 \[\alpha(C_{n,m}) = m, \ \omega(C_{n,m}) = \left\lfloor \frac{n}{m} \right\rfloor, \ \omega_f(C_{n,m}) = \frac{n}{m}, \text{ and } \omega_f(\overline{C_{n,m}}) = \frac{n}{\lfloor n/m \rfloor}. \]

We see that, for any rational \(r \geq 2 \), there is some circulant graph with \(\omega_f = r \). We will let \(C_{(r)} \) denote such a graph when we are only interested in the value of its fractional clique number.

Finally, we introduce graph sums and products. By the graph sum \(G = H_1 \oplus H_2 \)
we mean that \(V(G) = V(H_1) = V(H_2) \) and \(E(G) = E(H_1) \cup E(H_2) \).\(^6\) The graph
product we wish to consider is the lexicographic product, denoted \(G[H] \).\(^7\) Here we have

\(^6\) This notation often also includes the condition that \(E(H_1) \cap E(H_2) = \emptyset \). We will sometimes make use of this extra condition, and will note specifically when we do so.

\(^7\) Actually, we have two different uses for this notation. When \(G \) and \(H \) are distinct graphs, we mean lexicographic product. When \(U \subseteq V(G) \), we take \(G[U] \) to be the subgraph of \(G \) induced by \(U \). Which of these two is intended will be clear in context.
\[V(G[H]) = V(G) \times V(H), \] and \(E(G[H]) \) contains the edge \((u, x) \sim (v, y)\) iff either “\(uv \in E(G)\)” or “\(u = v\) and \(xy \in E(H)\)”.

Roughly speaking, to create \(G[H]\), we start with \(G\) and replace each vertex with a copy of \(H\). We then draw all possible edges between two copies of \(H\) if the original vertices of \(G\) were adjacent.

Lemma 1.5 For any graphs \(G, H\), \(\chi_f(G[H]) = \chi_f(G)\chi_f(H)\). \(\square\)

With one exception, the material of this introduction may be found in \([11]\) and \([6]\). Proofs are reproduced here to serve as templates for the work to follow. The proof of Lemma 1.5 for finite graphs may be found in \([11]\); the proof for infinite graphs may be found in Appendix A of this dissertation.

1.3 Overview of Results

In Chapter 2, we consider the fractional analog of the Erdős-de Bruijn Theorem, which states that the chromatic number of an infinite graph is the supremum of the chromatic numbers of all its finite subgraphs. Leader \([8]\) shows that this is not the case for fractional chromatic number. Let \(\overline{\chi_f}(G)\) be the supremum of \(\chi_f\) of all of \(G\)’s finite subgraphs. Leader constructs infinite graphs with \(\chi_f(G) = \infty\) and \(\overline{\chi_f}(G)\) any rational value \(\geq 2\). We answer an open question posed therein by constructing a class of infinite graphs with \(\overline{\chi_f}(G) < \chi_f(G) < \infty\). We also show that \(\omega_f(G) = \overline{\chi_f}(G)\), which then proves that \(\omega_f\) and \(\chi_f\) are not, in general, equal for infinite graphs.

In Chapter 3, we define and analyze fractional Ramsey numbers. These are defined by simply replacing \(\omega\) with \(\omega_f\) in the ordinary Ramsey number definition. Whereas ordinary Ramsey numbers are notoriously difficult to calculate and grow exponentially, we derive
an exact formula for fractional Ramsey numbers and therein show that they grow quadrat-
ically. We also fractionalize the multi-color version of Ramsey numbers, and derive some
bounds and specific results there. Finally, we discuss several generalizations of fractional
Ramsey number.

In Chapter 4, we consider the fractional dimension of partially ordered sets, where
an incomparable pair/realizer definition of fractional dimension is analogous to the ver-
tex/independent set definition of fractional chromatic number. We study posets derived
from trees, where the ground set consists of vertices and edges, and an edge is greater than
its endpoints. We calculate tight upper bounds for the fractional dimension of posets of
stars, binary trees and general trees. We also show that the fractional dimension of any
poset of an infinite tree with unbounded degree is 3.
2 The Fractional Chromatic Gap

As previously noted, $\chi_f(G) = \omega_f(G)$ for any finite graph G. This result follows from the strong duality of linear programs. Since there is no such duality result for infinite linear programs, it is reasonable to ask, “Does this equality still hold?” In general it does not, and the proof of this comes in conjunction with an open problem presented by Leader [8], which shall be addressed after presenting a few definitions.

To start, we need to alter the (LP) formulation of $\chi_f(G)$ to remove the linear programming language and accommodate infinite graphs. In this we follow Leader’s notation. We still let \mathcal{I} represent the set of independent sets of G, and then define a fractional coloring of G to be a mapping $f : \mathcal{I} \to [0, 1]$ such that for each $v \in G$ we have $\sum_{I \in \mathcal{I}, v \in I} f(I) \geq 1$. The weight of this coloring is $w(f) = \sum_{I \in \mathcal{I}} f(I)$. Leader’s definition of fractional chromatic number (which we call $\chi^*(G)$ for now) is

$$\chi^*(G) = \inf \{ w(f) : f \text{ a fractional coloring of } G \}.$$

Note that, if G is finite, this is equivalent to the (LP) formulation. Further, $\chi^*(G)$ is well-defined in the case that G is infinite. For the time being, we reserve the χ_f notation to represent the b-fold formulation, which is still clearly valid for infinite graphs. What is not clear is that these two formulations are still equivalent in the infinite case. We shall show that they are.

We similarly modify the definition of fractional clique number: a fractional clique of G is a mapping $g : V(G) \to [0, 1]$ such that for each $I \in \mathcal{I}$ we have $\sum_{v \in I} g(v) \leq 1$. The weight of this mapping is $w(g) = \sum_{v \in V(G)} g(v)$, and fractional clique number is
\[\omega^*(G) = \sup \{ w(g) : g \text{ a fractional clique of } G \}. \]

Again, this is equivalent to (DP) if \(G \) is finite\(^8\).

Finally, we define
\[\overline{\chi_f}(G) = \sup \{ \chi_f(H) : H \text{ a finite subgraph of } G \}, \]

The Erdös-de Bruijn theorem [4] states that the ordinary chromatic number of an infinite graph equals the supremum of the chromatic numbers of all its finite subgraphs. Zhu [17] asked if this was the case for fractional chromatic number, and Leader [8] answered in the negative by constructing graphs \(G \) with \(\chi_f(G) = \infty \) and \(\overline{\chi_f}(G) \) any rational number larger than 2. He then asked if there exists an infinite \(G \) for which \(\overline{\chi_f}(G) < \chi_f(G) < \infty \).

In this chapter, we construct a class of such graphs. Further, by proving that \(\omega_f(G) = \overline{\chi_f}(G) \), we show that the strong duality result for fractional chromatic number is, in general, false for infinite graphs.

2.1 Two Equalities for Infinite Graphs

The proof that \(\chi^*(G) = \lim_{b \to \infty} \chi_b(G)/b \) for finite \(G \) is fairly simple, but depends both on there being only a finite number of independent sets, and on the fact that linear programs with integer coefficients have rational solutions. For infinite graphs, we have neither of these. However, we may find rational and finite fractional colorings arbitrarily close to any fractional coloring, and this is sufficient.

\(^8\)Since we do not use the \(b \)-fold formulation of \(\omega_f \) here, we henceforth use this notation in place of \(\omega^* \). A proof that these two are equal appears in Appendix A.
Theorem 2.1 For any infinite graph G, $\chi^*(G) = \chi_f(G)$.

Proof. The proof from Lemma 1.1 that $\chi^*(G) \leq \lim_{b \to \infty} \chi_b(G)/b$ still works in the infinite case\(^9\): any b-fold coloring of value $\chi_b(G)$ is transformed into a fractional coloring of value $\chi_b(G)/b$, thereby proving that $\chi^*(G) \leq \chi_f(G)$.

Since $\chi^*(G) \leq \chi_f(G) \leq \chi(G)$, and Leader[8] showed that $\chi(G) = \infty$ implies $\chi^*(G) = \infty$, then we are done if $\chi^*(G) = \infty$. So we restrict our attention to the case of $\chi^*(G) < \infty$.

To proceed with the other inequality, for any given $\epsilon > 0$, we wish to find a positive integer b_0 such that $\chi_b(G)/b \leq \chi^*(G) + \epsilon$ for all $b \geq b_0$. If we can accomplish this, then $\lim_{b \to \infty} \chi_b(G)/b \leq \chi^*(G)$, and we are done. We will start with a fractional coloring f of weight sufficiently close to $\chi_f(G)$, then make two approximations of it: (i) restrict f to being positive on only a finite number of independent sets, and (ii) find sufficiently large b so that f may be rounded up to multiples of $1/b$ with negligible addition of total weight.

We may then use the method of Lemma 1.1 to convert f into a proper b-fold coloring.

(i) Given $\epsilon > 0$, take $\delta = \frac{\epsilon}{2}(1 + \chi^*(G) + \frac{\epsilon}{2})^{-1}$, so that $\frac{\chi^*(G)+\delta}{1-\delta} = \chi^*(G) + \epsilon/2$. Now, choose a fractional coloring f with $\chi^*(G) < w(f) \leq \chi^*(G) + \delta$. Since $w(f)$ is a (possibly) infinite sum of finite value, we may find finite partial sums arbitrarily close to this value.

More specifically, there exists a finite $\mathcal{I}' \subset \mathcal{I}$ (where \mathcal{I} are the independent sets of G) such that

$$\chi^*(G) \leq \sum_{I \in \mathcal{I}'} f(I) \leq \sum_{I \in \mathcal{I}} f(I) = w(f) \leq \chi^*(G) + \delta.$$

\(^9\)Note, however, that what we called “χ_f” in that proof we are now calling “χ^*”.
Let \(n = |\mathcal{I}'| \), and let \(f' \) be the weighting of \(\mathcal{I} \) by \(f \) restricted to \(\mathcal{I}' \), so that \(w(f') = \sum_{I \in \mathcal{I}'} f(I) \). Since \(w(f') \) is within \(\delta \) of \(w(f) \), \(f' \) must give each vertex of \(G \) weight at least \(1 - \delta \). We now define \(f'' \) by multiplying each \(f'(I) \) by \(1/(1-\delta) \), so that \(f'' \) gives each vertex weight at least 1, and is thus a valid fractional coloring. Further, \(w(f'') = w(f')/(1-\delta) \leq \frac{\chi^*_f(G) + \delta}{1-\delta} = \chi^*(G) + \epsilon/2 \) by our choice of \(\delta \).

(ii) Now, choose \(b > 2n/\epsilon \), and create the fractional coloring \(f_b \) by rounding \(f''(I) \) up to the nearest multiple of \(1/b \) for each \(I \in \mathcal{I}' \). We have only added weight, so \(f_b \) is still a valid fractional coloring, and we have added at most \(|\mathcal{I}'|/b = n/b < \epsilon/2 \) weight to \(w(f'') \).

So \(w(f_b) \leq w(f'') + \epsilon/2 \leq \chi^*(G) + \epsilon \). We now have a rational fractional coloring with common denominator \(b \) using only a finite collection of independent sets. For each \(I \in \mathcal{I}' \), if we associate \(b \cdot f_b(I) \) distinct colors (and apply them to each \(v \in I \)), then every vertex in \(G \) gets (at least) \(b \) colors. Since each color constitutes an independent set, we have created a proper \(b \)-fold coloring. We have used \(b \cdot w(f_b) \) colors, and so \(\chi_b(G)/b \leq (b \cdot w(f_b))/b \leq \chi^*(G) + \epsilon \). Further, this works for any \(b > 2n/\epsilon \), so we have our desired result. \(\square \)

We next address the relation between \(\omega_f \) and \(\chi_f \) for infinite graphs with the following.

Theorem 2.2 If \(G \) is an infinite graph, then \(\omega_f(G) = \chi_f(G) \).

Proof. Clearly \(\omega_f(G) \geq \omega_f(H) = \chi_f(H) \) for any finite subgraph \(H \) of \(G \), so \(\omega_f(G) \geq \chi_f(G) \).

On the other hand, if \(\omega_f(G) > \chi_f(G) \), then \(G \) has a fractional clique \(g \) with \(w(g) > \chi_f(G) \). Since \(w(g) \) is a (possibly) infinite sum, we may find a finite partial sum arbitrarily close to \(w(g) \); specifically, we may find one greater than \(\chi_f(G) \). But this finite partial sum is simply a weighting of a finite subset \(U \) of \(V(G) \). Let \(g' \) be \(g \) restricted to \(U \). Any independent set of \(G[U] \) (the finite subgraph induced by \(U \)) must also be an independent
set of G, and so g' is a fractional clique of $G[U]$. But then $\chi_f(G) < w(g') \leq \omega_f(G[U]) = \chi_f(G[U])$, which is a contradiction. Thus $\omega_f(G) > \chi_f(G)$ must be false, and our result follows.

Since we have examples of infinite graphs for which $\chi_f(G) < \chi_f(G)$ (see Leader [8] and the following section), we know that, unlike the case of finite graphs, ω_f and χ_f can differ in infinite graphs.

2.2 Construction of Graphs with $\chi_f(G) < \omega_f(G) < \infty$

We first define graphs G^n and $G^{n,m}$. We let $V(G^n) = L \cup R$, where L is the set of positive integers $N = \{1, 2, 3, \ldots\}$. For every size n subset N of L we put a distinct copy of K_n in R, and adjoin each vertex of this K_n to a distinct vertex of N. Thus every vertex in R is adjacent to exactly one vertex in L, and to $n - 1$ vertices in R. $G^{n,m}$ is defined identically, except that $L = [m] = \{1, 2, \ldots, m\}$. $G^{n,m}$ may alternately described by starting with a complete n-regular hypergraph on m vertices, and then forming a graph by replacing each hyperedge with a new, distinct copy of K_n, and adjoining each vertex of this new K_n to a distinct vertex from the original hyperedge.

We now define the graphs $G_{r,s}^n$ and $G_{r,s}^{n,m}$ by replacing the vertices of G^n and $G^{n,m}$, respectively, with circulant graphs\(^{10}\); we shall refer to these circulant graphs within $G_{r,s}^n$ and $G_{r,s}^{n,m}$ as “nodes.” To be precise, we replace each vertex in L with a $C_{(r)}$, each vertex in R with a $C_{(s)}$, and all possible edges are drawn between two nodes exactly when their original vertices were adjacent in G^n or $G^{n,m}$. Alternately, recalling the lexicographic product, L may be thought of as $\overline{K_{\infty}}[C_{(r)}]$ or $\overline{K_m}[C_{(r)}]$ (in $G_{r,s}^n$ or $G_{r,s}^{n,m}$, respectively), and $\chi_f(C_{(r)}) = r$.

\(^{10}\)Recall that $C_{(r)}$ is a circulant graph with $\chi_f(C_{(r)}) = r$.
Figure 3: The graph $G_{r,s}^{2,3}$. $n = 2$ since R is comprised of disjoint $K_2[C(s)]$’s. $m = 3$ is the number of nodes in L. The nodes shown in L and R represent copies of $C(r)$ and $C(s)$, respectively. The edges shown actually represent all possible edges between nodes.

R as a collection of disjoint copies of $K_n[C(s)]$. Figure 3 shows $G_{r,s}^{2,3}$.

If $U \subset V(G)$, we let $G[U]$ denote the subgraph of G induced by U. From Lemma 1.5 and our observations about L and R, we see that

$$
\chi_f(G_{r,s}^n[L]) = \chi_f(G_{r,s}^{n,m}[L]) = \chi_f(C(r)) = r
$$

$$
\chi_f(G_{r,s}^n[R]) = \chi_f(G_{r,s}^{n,m}[R]) = \chi_f(K_n[C(s)]) = ns,
$$

and similarly,

$$
\chi_b(G_{r,s}^n[L]) = \chi_b(G_{r,s}^{n,m}[L]) = \chi_b(C(r)) \geq br
$$

$$
\chi_b(G_{r,s}^n[R]) = \chi_b(G_{r,s}^{n,m}[R]) = \chi_b(K_n[C(s)]) \geq bn.s.
$$

A little thought reveals that every finite subgraph of $G_{r,s}^n$ must also be a subgraph of some $G_{r,s}^{n,m}$, so $\overline{\chi_f}(G_{r,s}^n) = \lim_{m \to \infty} \chi_f(G_{r,s}^{n,m})$ (since $H \subset G$ implies $\chi_f(H) \leq \chi_f(G)$). We are now ready to start our calculations.

Theorem 2.3 $\chi_f(G_{r,s}^n) = r + ns.$
Proof. Since $\chi_f(G^n_{r,s}[L]) = r$ and $\chi_f(G^n_{r,s}[R]) = ns$, $\chi_f(G^n_{r,s}) \leq r + ns$ is immediate.

To prove equality, it suffices to show that $\chi_b(G^n_{r,s}) \geq (r + ns)b$ for all $b \in \mathbb{N}$. This, in turn, is true if, for all $b \in \mathbb{N}$, there exists $m \in \mathbb{N}$ such that $\chi_b(G^n_{r,s}^m) \geq (r + ns)b$ (since $\chi_b(G^n_{r,s}) \geq \chi_b(G^n_{r,s}^m)$ for all b and m).

Fix $b \in \mathbb{N}$. Whatever $\chi_b(G^n_{r,s})$ is (say, c), any optimal b-fold coloring of any $G^n_{r,s}^m$ will use no more than c colors. Suppose that $C_{(r)}$ has a vertices, and consider the set of colors put on any copy of $C_{(r)}$ in L. We are assigning b colors to each vertex in that node, but more to the point, we are assigning no more than ab of a finite set of c colors to this node. There are only a finite number of ways to do this, so if we color enough nodes, we will necessarily have nodes with identical color sets. What’s more, with a, b and c fixed, if we take m (the number of nodes in L) large enough, we can guarantee that at least n nodes in L will share identical color sets in *any* optimal b-fold coloring of $V(G^n_{r,s}^m)$ (this observation follows from a simple pigeon-hole argument). In such a b-fold coloring of such a $G^n_{r,s}^m$, consider the $K_n[C_{(s)}]$ in R which corresponds to these n identically colored nodes in L. Since every vertex of every node of this $K_n[C_{(s)}]$ is adjacent to these same colors, a completely disjoint color set must be used to color these vertices of R. So at best, we can color the nodes of L using $\chi_b(C_{(r)}) \geq rb$ colors, and some copy of $K_n[C_{(s)}]$ with $\chi_b(K_n[C_{(s)}]) \geq nsb$ different colors. Thus $\chi_b(G^n_{r,s}^m) \geq (r + ns)b$, as desired. □

We next turn our attention to the problem of finding $\chi_f(G^n_{r,s})$, which in turn requires computing $\chi_f(G^n_{r,s}^m)$. This can’t be done exactly in most cases, but can be expressed in terms of a root of a simple polynomial. For convenience, we define Q_f to be the set of all rationals in $\{1\} \cup [2, \infty)$, that is, the set of all fractional chromatic numbers of finite graphs (see [11]).
Theorem 2.4 For any $n \in \mathbb{N}$ and $r, s \in Q_f$, let p_0 be the real root of $rx^n + n sx - r = 0$ in $(0, 1)$. Then $\chi_f(G_{r,s}^n) = r/p_0$.

Proof. Fix $n \in \mathbb{N}$ and $r, s \in Q_f$. We first observe that $f(x) = rx^n + n sx - r$ has a single real root in $(0, 1)$, since $f'(x) = rnx^{n-1} + ns > 0$ for $x \geq 0$, $f(0) = -r$ and $f(1) = ns$.

Since $\chi_f(G_{r,s}^n) = \lim_{m \to \infty} \chi_f(G_{r,s}^{n,m})$, it suffices to prove the following two inequalities:

(I) $\chi_f(G_{r,s}^{n,m}) \leq r/p_0$ for all $m \in \mathbb{N}$

(II) $\lim_{m \to \infty} \omega_f(G_{r,s}^{n,m}) \geq r/p_0$

since $\omega_f(G) = \chi_f(G)$ for any finite G.
\[\chi_f(G_{n,m}^{r,s}) \leq r/p_0 \]

Fix \(m \in \mathbb{N} \), and consider the maximal independent sets of \(G_{n,m}^{r,s} \). We may fully describe any such set with a single parameter \(p \) (up to a few irrelevant decisions\(^{11}\)). Denote such an independent set by \(I_p \), where \(p \) is the fraction of nodes in \(L \) which have at least one vertex in \(I_p \). We say that such a node is \textit{covered} by \(I_p \). Putting even a single vertex from such an \(L \) node in \(I_p \) excludes from \(I_p \) anything in \(R \) adjacent to that node. So if \(I_p \) is to be maximal, from every covered node in \(L \) we must put in \(I_p \) a maximal independent set from that node (which is a copy of \(C_{(r)} \)). Since all maximal independent sets of \(C_{(r)} \) are the same up to isomorphism, our choice of this set is irrelevant. Next consider any of one of the disjoint copies of \(K_n[C_{(s)}] \) in \(R \). Each node in this subgraph has a “matched” node in \(L \), and we may only include in \(I_p \) vertices from a node of \(R \) if its matching node in \(L \) is not covered by \(I_p \) (every vertex in a node of \(R \) is adjacent to every vertex in its matching node in \(L \)). So in choosing vertices from this \(K_n[C_{(s)}] \) for \(I_p \), we need only consider nodes whose matching nodes in \(L \) are not covered. Further, once we include in \(I_p \) a vertex from any one node of this \(K_n[C_{(s)}] \), we exclude all its other nodes from \(I_p \), since this vertex is adjacent to every vertex in every other node of this \(K_n[C_{(s)}] \). So \(I_p \) intersects at most one node of any \(K_n[C_{(s)}] \). The choice of which “match-uncovered” node is irrelevant for our purposes. Once we have selected the node, since we want \(I_p \) to be maximal, we must take a maximal independent set from that copy of \(C_{(s)} \). Again, which one is irrelevant up to isomorphism. Thus, by specifying only \(p \), we have (excepting a few equivalent choices) fully described what the maximal independent sets \(I_p \) must be.

\(^{11}\)We would like to say “up to isomorphism”, but this is not strictly true. However, it behaves this way for our purposes.
Since these are our only maximal independent sets, they will be the only independent
sets to receive positive weight in our optimal fractional coloring. In particular, we wish to
limit ourselves to weighting sets with the “best” value of p. This value will be the one for
which all such I_p cumulatively place the same total weight on vertices in L and R. To this
end, let p be fixed, and imagine I_p to be a random variable; specifically, an independent set
chosen uniformly and at random from the finite number of maximal independent sets with
parameter p. We then wish to equate $\Pr\{v \in I_p \mid v \in L\}$ and $\Pr\{v \in I_p \mid v \in R\}$. Note
that if we choose a maximal independent set uniformly and at random in $C(r) = C_{ab}$, the
probability that a given vertex is in this set is exactly $b/a = 1/r$. Since p is the fraction of
nodes in L which are covered by I_p,

$$
\Pr\{v \in I_p \mid v \in L\} = \Pr\{v \text{ is in a node covered by } I_p\}.
$$

$$
= \Pr\{v \text{ is in an independent set of its node}\}
$$

$$
= p/r.
$$

Given $v \in R$, for the event $v \in I_p$ to occur, three conditions must be met: (i) the
matching node in L of v’s node must not be in I_p, (ii) v’s node must be chosen from
among all such “unmatched” nodes in its copy of $K_{n[C(\alpha)]}$, and (iii) v must be in an
independent set chosen from its node. Now, $\Pr\{(i)\} = 1 - p$, and $\Pr\{(iii)\} = 1/s$, but
$\Pr\{(ii)\}$ is conditional on the number of other unmatched nodes in this copy of $K_{n[C(\alpha)]}$.
We will let the index k count the total number of such unmatched nodes (including v’s),
and K will be $k - 1$ (the number of other unmatched nodes). $\Pr\{K = k - 1\}$ for any
fixed value of k is described as follows: if we have a huge (size m) pool of objects, from
which a fraction p are being chosen (“matched”), and we consider a specific collection of
n – 1 of these objects (before choosing), what is the probability that exactly n – k of these will be chosen (so that k – 1 are “unmatched”)? The answer to this is not easy; because we are choosing from a finite sample, if one of our specified objects is chosen, it affects the probability that others are chosen. However, when m >> n, this affect is negligible, and we can approximate this process by letting each of our n – 1 specified objects be chosen independently with probability p. That is, as m gets large we may approximate this probability by a Bin(n – 1, p) distribution, and we get

\[
\Pr\{(ii)\} = \sum_{k=1}^{n} \Pr\{(ii) \mid K = k - 1\} \cdot \Pr\{K = k - 1\} \\
\approx \sum_{k=1}^{n} \left(\frac{1}{k}\right) \cdot \left(\binom{n-1}{k-1} (1-p)^{k-1} p^{n-k}\right)
\]

and

\[
\Pr\{v \in I_p \mid v \in R\} = \Pr\{(i)\} \cdot \Pr\{(ii)\} \cdot \Pr\{(iii)\} \\
\approx \frac{1}{ns} \sum_{k=1}^{n} \binom{n}{k} (1-p)^k p^{n-k} \\
\approx \frac{1}{ns} (1 - p^n).
\]

Now we set \(\Pr\{v \in I_p \mid v \in L\} = \Pr\{v \in I_p \mid v \in R\}\), and get \(rp^n + ns p - r = 0\). If \(p_0\) is the real root of this polynomial in \((0,1)\), then both of the above probabilities are equal to \(p_0/r\). So each \(v \in G_{r,s}^{n,m}\) occurs in exactly a fraction \(p_0/r\) of the maximal independent sets with parameter \(p_0\). If we distribute total weight \(r/p_0\) equally among all such independent sets, then each vertex in \(G_{r,s}^{n,m}\) will be in independent sets of total weight exactly \((r/p_0)(p_0/r) = 1\). Thus we have created a valid fractional coloring with total weight \(r/p_0\).
Of course, \(p_0 \) is liable to be irrational, and in any case not a multiple of \(1/m \), so we can’t actually choose exactly a fraction \(p_0 \) of the nodes in \(L \) to be covered by an \(I_p \). However, as \(m \to \infty \), we may choose \(p \) arbitrarily close to \(p_0 \). Also, recall that the value of \(\Pr\{K = k - 1\} \) was only approximated by a binomial distribution. But again, this becomes arbitrarily close to correct as \(m \to \infty \), and so \(r/p_0 \) will be an upper bound on \(\lim_{m \to \infty} \chi_f(G_{r,s}^{n,m}) \). Since \(G_{r,s}^{n,m} \subset G_{r,s}^{n,m+1} \), we know \(\chi_f(G_{r,s}^{n,m}) \) must be a non-decreasing function of \(m \). Thus \(r/p_0 \) must actually be an upper bound on \(\sup_{m \in \mathbb{N}} \chi_f(G_{r,s}^{n,m}) \), and we’re done.

\[\textbf{(II)} \lim_{m \to \infty} \omega_f(G_{r,s}^{n,m}) \geq r/p_0 \]

Given \(G_{r,s}^{n,m} \) as before, we wish to produce a fractional clique \(g \) with weight \(r/p_0 \) (more correctly, a sequence of fractional cliques with weights which will approach \(r/p_0 \) as \(m \to \infty \)). We assign total weight \(\alpha \) to \(L \), divided evenly among these vertices (each vertex gets weight \(\alpha/|L| \)), and weight \(\beta \) to \(R \), also evenly distributed, so that \(w(g) = \alpha + \beta \). We require that \(g \) put weight at most 1 in any independent set. Since the \(I_p \)’s are the only maximal independent sets in \(G \), we need only worry about the weight on them. The total weight put on any \(I_p \) is

\[
w_{\alpha,\beta}(p) = \alpha \cdot \frac{|I_p \cap L|}{|L|} + \beta \cdot \frac{|I_p \cap R|}{|R|}.
\]

But \(\frac{|I_p \cap L|}{|L|} \) is just the previously calculated \(\Pr\{v \in I_p \mid v \in L\} \), and similarly for \(R \), so

\[
w_{\alpha,\beta}(p) = \alpha \frac{p}{r} + \beta \frac{1 - p^n}{n^s}.
\]

Now, let us set

\[
\alpha = \frac{r}{p_0} \left(\frac{r p_0^{n-1}}{s + r p_0^{n-1}} \right), \quad \beta = \frac{r}{p_0} \left(\frac{s}{s + r p_0^{n-1}} \right),
\]
where p_0 is the real root of $r p^n + n s p - r = 0$ in $(0, 1)$. This selection of α and β gives us the following:

(i) $\alpha + \beta = r/p_0$.

(ii) Taking derivatives of $w_{\alpha,\beta}(p)$ with respect to p gives

$$w'_{\alpha,\beta}(p) = \frac{\alpha}{r} - \frac{\beta}{s} p^{n-1}, \quad w'_{\alpha,\beta}(p_0) = 0; \quad w''_{\alpha,\beta}(p) = -\frac{\beta(n-1)}{s} p^{n-2} \leq 0 \text{ for } p \geq 0.$$

From the above, we see that $w_{\alpha,\beta}(p)$ attains its maximum value on $p \in [0, 1]$ at p_0.

(iii) Since $(1 - p_0^s)/ns = p_0/r$, we have $w_{\alpha,\beta}(p_0) = (p_0/r)(\alpha + \beta) = 1$.

This shows that 1 is the largest value given by g to any I_p, and thus to any independent set of G. Thus g is a valid fractional clique, and has total weight r/p_0.

Again, we must be careful. As noted at the end of part(I), $\Pr\{v \in I_p \mid v \in R\}$ is not quite $(1 - p^n)/ns$. However, it will approach this value as $m \to \infty$. So while no $G_{r,s}^{n,m}$ will actually have fractional clique number equal to r/p_0, as m gets large we may construct fractional cliques of $G_{r,s}^{n,m}$ with values arbitrarily close to r/p_0. Since fractional clique number is a maximization LP, these values provide a lower bound on ω_f, so $\lim_{m \to \infty} \omega_f(G_{r,s}^{n,m}) \geq r/p_0$ as desired. \(\square\)

2.3 The Behavior of $\chi_f(G)$ vs. $\chi_f(G)$

We have established the existence of graphs for which $\chi_f(G) < \chi_f(G) < \infty$. Next we might well ask, “For which $x < y < \infty$ does there exist a graph with $x = \chi_f(G)$ and $y = \chi_f(G)$?” We are only concerned with such (x, y) pairs where $2 < x < y$, since $\chi_f(G) = 2$ implies G is bipartite, even for infinite graphs.
We define
\[
S_n = \{(x, y) \in \mathbb{R}^2 : x = \chi_f^n(G_{r,s}), \ y = \chi_f(G_{r,s}) \text{ for some } r, s \in \mathbb{Q}_f\}
\]
\[
= \{(x, y) \in \mathbb{R}^2 : \exists r, s \in \mathbb{Q}_f \text{ s.t. } \frac{r}{x} \in (0, 1), \quad \left(\frac{r}{x}\right)^n + \frac{n s}{x} - 1 = 0, \ y = r + ns\}.
\]

Note that each point in \(S_n\) is generated by an ordered pair \((r, s) \in \mathbb{Q}_f^2\). Because the definition of \(S_n\) generally involves a high order polynomial, it is difficult to describe this set more precisely. \(S_2\), however, only involves a quadratic, and we may solve for \(x\) in terms of \(r\) and \(s\):
\[
x = \frac{r^2}{-s + \sqrt{r^2 + s^2}}.
\]
Setting \((r, s) = (1, 1)\) generates \((x, y) = (1 + \sqrt{2}, 3)\), which is an isolated point of \(S_2\). Holding one of \(r\) or \(s\) fixed at 1 and letting the other one increase from 2 generates a curve which quickly approaches the line \(y = x + 1\). Finally, \(\{(r, s) : r, s \geq 2\}\) generates a solid\(^{12}\), roughly cone-shaped region with point at \((x, y) = (2 + 2\sqrt{2}, 6)\) (see Figure 4).

For higher values of \(n\), we may use root-finding software to plot \(S_n\), and we see a set of the same general shape as \(S_2\). Also, we may bound the ratio \(x/y\) for \(S_2\) and for all \(S_n\).

Theorem 2.5 \(\frac{\chi_f(G_{r,s}^2)}{\chi_f(G_{r,s})} \leq \frac{5}{4}\). This bound is tight.

Proof. We have just seen that
\[
\frac{\chi_f(G_{r,s}^2)}{\chi_f(G_{r,s})} = x = \frac{r^2}{-s + \sqrt{r^2 + s^2}}.
\]

\(^{12}\)The region as described is not actually solid, as it is generated only by rational \(r\) and \(s\). However, if our goal is to cover as much of the plane as possible, we may construct \(G\) to be a disjoint sequence of \(G_{r,s}^n\) in which the \(r\)'s and \(s\)'s approach any desired real limits. It is easy to show that \(\chi_f(G)\) and \(\chi_f(G)\) actually take on their expected values as indicated by these limits.
If we solve for s, we get $s = \frac{1}{2} \left(x - \frac{r^2}{x} \right)$. We now fix x, and see that

$$
\chi_f(G_{r,s}^2) = y = r + 2s = r + x - \frac{r^2}{x}.
$$

$$
\frac{dy}{dr} = 1 - \frac{2r}{x} = 0 \quad \text{at} \quad r = x/2
$$

$$
\frac{d^2y}{dr^2} = -2/x < 0
$$

If we take $x = \chi_f$ to be a fixed value, we may still vary the value of $y = \chi_f$ by varying r and s. And the above shows that, as a function of r, y is maximized at $r = x/2$. At this value, $y = \frac{5}{4}x$, that is, $\chi_f(G_{r,s}^2) = \frac{5}{4}\chi_f(G_{r,s}^2)$. This is the largest χ_f can be relative to χ_f, and our construction guarantees that this ratio is actually achieved. ☐

Theorem 2.6 $\frac{\chi_f(G_{r,s}^n)}{\chi_f(G_{r,s}^2)} \leq 2$ for any integer $n \geq 2$ and $r, s \in Q_f$. Further, if we keep $r = ns$, then this bound is tight as $n \to \infty$.

Proof. Since any $G_{r,s}^{n,m}$ contains $C(r)$ and $K_n[C(s)]$ as subgraphs, we must have $\chi_f(G_{r,s}^{n,m}) \geq \max\{r, ns\}$, so

$$
\chi_f(G_{r,s}^n) = r + ns \leq 2\max\{r, ns\} \leq 2\chi_f(G_{r,s}^{n,m}),
$$
which proves the first half of our claim.

Next, set \(r = ns \), so that \(p_0 \) is the root of \(x^n + x - 1 = 0 \) in \((0, 1)\). Let \(n \to \infty \). Then \(p_0 \to 1 \) since \(x^n \to 0 \) for any \(x \) in \((0, 1)\). So we have \(\chi_f(G^n_{r,s}) = r/p_0 \to r \) and \(\chi_f(G^n_{r,s}) = r + ns = 2r \). \(\square \)

We may now define \(S = \cup_{n=2}^{\infty} S_n \) to be the region of the plane covered by ordered pairs of the form \((\chi_f(G^n_{r,s}), \chi_f(G^n_{r,s}))\). Again, if our goal is to cover as much of the plane as possible, we may resort to one more trick: recall from Lemma 1.5 that \(\chi_f(G[H]) = \chi_f(G)\chi_f(H) \), and note that \(\chi_f(G[H]) = \chi_f(G)\chi_f(H) \) follows immediately from this. Since any two points in \(S \) represent two known graphs, we may take their lexicographic product to get a graph with \((\chi_f(G), \chi_f(G))\) equal to the component-wise product of the two points in \(S \). More generally, by taking multiple graph products, we may now cover the following region of the plane:

\[
S' = \{ (\prod_{i=1}^{k} x_i, \prod_{i=1}^{k} y_i) \in \mathbb{R}^2 : (x_i, y_i) \in S \text{ for } i = 1, \ldots, k, k \in \mathbb{N} \}.
\]

In particular, for \((x, y) \in S'\), the ratio \(y/x \) is no longer bounded, since \((x^k, y^k) \in S'\) for any integer \(k \) and \((x, y) \in S\). However, attaining large ratios also requires large values of \(x \) and \(y \). So, for instance, while \((n, r, s) = (2, 4, 3)\) gives the point \((8, 10) \in S_2\), and Leader [8] constructs a graph with \((\chi_f(G), \chi_f(G)) = (8, \infty)\), it is unknown whether or not a graph exists with \((\chi_f(G), \chi_f(G)) = (8, 80)\) (for instance). So while much of the plane has been covered herein, we still have the open problem “Given any real \(x \) and \(y \) with \(y > x > 2 \), does there exist \(G \) with \(\chi_f(G) = x \) and \(\chi_f(G) = y \)?”
3 Fractional Ramsey Numbers

Since the definition of Ramsey numbers makes use of the clique number of graphs, we may define fractional Ramsey numbers simply by substituting fractional clique number into this definition. Recall that the Ramsey arrow notation “$n \rightarrow (k, l)$” means that “For any red/blue-coloring of the edges of K_n, there must a either a red k-clique or a blue l-clique.” More precisely, whenever $K_n = H_1 \oplus H_2$, then we must have $\omega(H_1) \geq k$ or $\omega(H_2) \geq l$. This edge-decomposition of K_n may be thought of as an edge 2-coloring. The Ramsey number $r(k, l)$ is the least positive integer n for which this statement is true. Very few exact values for $r(k, l)$ are known. For instance, $r(5, 5)$ is only known to be somewhere between 43 and 55. And while the growth rate of $r(k, k)$ is known to be an exponential function of k, the best known lower and upper bounds on this growth are (roughly) $\sqrt{2}^k$ and 4^k, respectively.

Now, we may define the fractional Ramsey arrow notation $n \xrightarrow{f} (x, y)$ to mean that, whenever $K_n = H_1 \oplus H_2$, we must have $\omega_f(H_1) \geq x$ or $\omega_f(H_2) \geq y$. Then the fractional Ramsey number $r_f(x, y)$ is the least positive integer n for which $n \xrightarrow{f} (x, y)$. Note that we may meaningfully take x and y to be any real numbers greater than 1.

All graphs in this chapter are implicitly assumed to be finite. When we speak of $K_n = H_1 \oplus H_2$ as an edge 2-coloring, it is implicitly assumed that we are invoking the condition on \oplus that $E(H_1) \cap E(H_2) = \emptyset$. However, a little thought reveals that the above Ramsey definitions with or without this condition are equivalent. We only note this because, in forthcoming constructions, it is sometimes convenient to take H_i’s which are not edge-disjoint. However, if we find such H_i’s with $\omega_f(H_i) < x_i$, removing edges from some H_i’s
to make them edge-disjoint does not cause this condition to be violated. So we adhere to
the convention of \(E(H_1) \cap E(H_2) = \emptyset \) only as is convenient.

3.1 The Value of \(r_f(x, y) \)

Unlike the ordinary Ramsey numbers, the exact value of \(r_f(x, y) \) is known for any \(x, y \geq 2 \).

Theorem 3.1 Let \(x, y \in \mathbb{R} \) with \(x, y > 1 \). Express \(x \) and \(y \) as \(x = k + \varepsilon \) and \(y = l + \delta \), where \(k, l \in \mathbb{N} \) and \(0 < \varepsilon, \delta \leq 1 \). Let \(q = \min\{\lfloor \varepsilon l \rfloor, \lceil \delta k \rceil\} \). Then \(r_f(x, y) = kl + q \).

Proof. We first establish two basic facts about \(\varepsilon, \delta, k, l \) and \(q \) as given above.

(i) Either \(q = \lfloor \varepsilon l \rfloor \geq \varepsilon l \) or \(q = \lceil \delta k \rceil \geq \delta k \), so that either \(q/l \geq \varepsilon \) or \(q/k \geq \delta \).

(ii) \(q \leq \lfloor \varepsilon l \rfloor < \varepsilon l + 1 \) and \(q \leq \lceil \delta k \rceil < \delta k + 1 \), so that \((q - 1)/l < \varepsilon \) and \((q - 1)/k < \delta \).

Now, \(r_f(x, y) \) is clearly symmetric in \(x \) and \(y \), and \(r_f(x, y) = \lceil x \rceil \) is easily checked for \(y \in (1, 2] \), so we restrict our attention to the case of \(x \) and \(y \) both greater than 2. Otherwise, take \(x, y, k, \varepsilon, l, \delta \) and \(q \) as given above, and set \(n = kl + q \). We establish that \(r_f(x, y) = n \) in two steps: first, show that \(n \not\rightarrow (x, y) \); then, construct a decomposition \(K_{n-1} = H_1 \oplus H_2 \) with \(\omega_f(H_1) < x \) and \(\omega_f(H_2) < y \) (which shows that \(n - 1 \not\rightarrow (x, y) \) is false).

To show \(n \not\rightarrow (x, y) \), let \(K_n = H_1 \oplus H_2 \) be any edge 2-coloring of \(K_n \) (so that \(E(H_1) \cap E(H_2) = \emptyset, \omega(H_1) = \alpha(H_2) \) and vice versa). If \(\omega(H_1) \geq k + 1 \), then \(\omega_f(H_1) \geq k + 1 \geq x \), and we’re done. Since \(\omega(H_2) \geq l + 1 \) similarly implies \(\omega_f(H_2) \geq y \), we may suppose that \(\alpha(H_2) = \omega(H_1) \leq k \) and \(\alpha(H_1) = \omega(H_2) \leq l \). Then by Lemma 1.3 and (i)
above, either $q/l \geq \epsilon$, in which case
\[
\omega_f(H_1) \geq \frac{n}{\alpha(H_1)} \geq \frac{kl + q}{l} = k + \frac{q}{l} \geq k + \epsilon,
\]
or $q/k \geq \delta$, which gives
\[
\omega_f(H_2) \geq \frac{n}{\alpha(H_2)} \geq \frac{kl + q}{k} = l + \frac{q}{k} \geq l + \delta.
\]
That one of these holds is exactly the statement $n \not\rightarrow (x, y)$.

To achieve $K_{n-1} = H_1 \oplus H_2$ with $\omega_f(H_1) < x$ and $\omega_f(H_2) < y$, we take $H_1 = C_{(n-1), l}$ and $H_2 = \overline{H_1}$. By Lemma 1.4 and (ii) above, this immediately gives
\[
\omega_f(H_1) = \frac{n - 1}{l} = \frac{kl + q - 1}{l} = k + \frac{q - 1}{l} < k + \epsilon = x
\]
and
\[
\omega_f(H_2) = \frac{n - 1}{[(n - 1)/l]}.
\]
We note that $(n - 1)/l = k + \frac{q - 1}{l} < k + \epsilon$, and also that $(n - 1)/l \geq k$ since q is at least 1. So $[(n - 1)/l] = k$, and applying (ii) again gives
\[
\omega_f(H_1) = \frac{n - 1}{k} = \frac{kl + q - 1}{k} = l + \frac{q - 1}{k} < l + \delta = y.
\]
These are exactly the properties we required of H_1 and H_2, so $n - 1 \not\rightarrow (x, y)$ is false, and we’re done. □

Corollary 3.2 If $k \geq l \geq 2$ are integers, then $r_f(k, l) = kl - k$. □

Note that, while $r(k, k)$ grows exponentially in k, $r_f(x, x)$ only grows quadratically in x. Two plots of $r_f(x, x)$ vs. x are shown in Figure 5.
Figure 5: Two graphs of the function $y = r_f(x, x)$. Although this is a step function, its growth roughly conforms to a parabola. Large jumps occur at integer values of x, while size 1 jumps occur at even intervals between integers.

3.2 Multicolor Fractional Ramsey Numbers

We may extend the definition of Ramsey numbers by using more than two colors on the edges of K_n. We let $n \rightarrow (k_1, \ldots, k_p)$ mean that, whenever $K_n = H_1 \oplus \cdots \oplus H_p$, we must have $\omega(H_i) \geq k_i$ for some $i \in \{1, \ldots, p\}$. The Ramsey number $r(k_1, \ldots, k_p)$ is the least positive integer n for which this holds.

Similarly, we take $n \xrightarrow{f} (x_1, \ldots, x_p)$ to mean that, whenever $K_n = H_1 \oplus \cdots \oplus H_p$, we must have $\omega_f(H_i) \geq k_i$ for some $i \in \{1, \ldots, p\}$, and the fractional Ramsey number $r(x_1, \ldots, x_p)$ is the least positive integer for which this is true.

We may derive a recursive upper bound on r_f as follows:

Theorem 3.3 Let $x_1, \ldots, x_p \geq 2$. Then

$$r_f(x_1, \ldots, x_p) \leq \lceil (r_f(x_1, \ldots, x_{p-1}) - 1)x_p \rceil.$$

Proof. Let $n = \lceil (r_f(x_1, \ldots, x_{p-1}) - 1)x_p \rceil$, and let $K_n = H_1 \oplus \cdots \oplus H_p$ be any p-
coloring of $E(K_n)$. Let $G = H_1 \oplus \cdots \oplus H_{p-1}$. If $\omega(G) \geq r_f(x_1, \ldots, x_{p-1})$, then G contains a complete subgraph large enough to guarantee that $\omega_f(H_i) \geq x_i$ for some $i \in \{1, \ldots, p-1\}$, and we’re done. So we may suppose that $\omega(G) \leq r_f(x_1, \ldots, x_{p-1}) - 1$. Since $\alpha(H_p) = \omega(G)$ we have

$$\omega_f(H_p) \geq \frac{n}{\alpha(H_p)} \geq \frac{[(r_f(x_1, \ldots, x_{p-1}) - 1)x_p]}{r_f(x_1, \ldots, x_{p-1}) - 1} \geq x_p$$

as required. □

In fact, there are no known instances where this upper bound does not provide the correct value of r_f. For example, in the case of $p = 2$, the given bound reduces to

$$r_f(x, y) \leq \min \{\lfloor \lfloor x \rfloor - 1 \rfloor y, \lfloor \lfloor y \rfloor - 1 \rfloor x \}$$

which is easily shown to be the value derived for $r_f(x, y)$ in Theorem 3.1. Of course, r_f is symmetric in its arguments, so in order for the expression in Theorem 3.3 to yield the best possible bound, we must at each recursive step choose the best x_i value to play the role of x_{p} in this expression. All of this implies the following conjecture.

Conjecture 3.4 Let $x_1, \ldots, x_p \geq 2$. Then for some $i \in \{1, \ldots, p\}$,

$$r_f(x_1, \ldots, x_p) = \lfloor (r_f(x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_p) - 1)x_i \rfloor \ . □$$

In the case that the arguments are integers, the “correct” choice of x_i is simply the largest argument, so for integers $k_p \geq k_{p-1} \geq \cdots \geq k_1 \geq 2$ we have

$$r_f(k_1, \ldots, k_p) \leq \prod_{i=1}^{p} k_i - \sum_{i=2}^{p} k_{i-1}k_p - k_p \ .$$
On the other hand, it is easily shown\(^{13}\) that
\[
\rho_f(k_1, \ldots, k_p) > \prod_{i=1}^{p} (k_i - 1)
\]
so our upper bound is at least on the right order of magnitude.

There are several other instances where our conjecture is known to be true, the most significant being the case where the arguments are all the same integer.

Theorem 3.5
For integers \(k, p \geq 2,*

\[
\rho_f(k, k, \ldots, k) = k^p - k^{p-1} - \cdots - k.
\]

We postpone the rather long proof of this theorem to mention a few other instances where Conjecture 3.4 is true. In the following three cases, the value of \(\rho_f\) is that given by Conjecture 3.4, and we give \(K_{\rho_f-1} = H_1 \oplus H_2 \oplus H_3\), where each \(H_i\) is the indicated circulant graph, and \(I_i\) one of its independent sets of required size. We take \(V(K_{\rho_f-1}) = V(H_i)\) to be \(\{0, 1, \ldots, \rho_f - 2\}\), and note that \(\omega_f(H_i) = (\rho_f - 1)/|I_i|\) (by Lemma 1.3).

- \(\rho_f(x, y, z) = 20, \frac{19}{7} < x, y \leq 3, \frac{19}{3} < z \leq 4.\)
 \(H_1 = \langle \{2, 8\} \rangle_{19},\) \(I_1 = \{0, 3, 6, 9, 12, 15, 18\},\) \(\omega_f(H_1) = 19/7.\)
 \(H_2 = \langle \{4, 6\} \rangle_{19},\) \(I_2 = \{0, 1, 2, 3, 10, 11, 12\},\) \(\omega_f(H_2) = 19/7.\)
 \(H_3 = \langle \{1, 3, 5, 7, 9\} \rangle_{19},\) \(I_3 = \{0, 2, 4, 6, 8\},\) \(\omega_f(H_3) = 19/5.\)

- \(\rho_f(x, y, z) = 28, \frac{27}{10} < x \leq 3, \frac{27}{7} < y, z \leq 4.\)
 \(H_1 = \langle \{1, 4, 6\} \rangle_{27},\) \(I_1 = \{0, 2, 5, 7, 10, 12, 15, 17, 20, 22\},\)
 \(\omega_f(H_1) = 27/10.\)

\(^{13}\)See [6].
There is a final general case where Conjecture 3.4 is true. Let $k_1, \ldots, k_p \geq 2$ be integers. Then if each of $\varepsilon_1, \ldots, \varepsilon_p > 0$ is sufficiently small, we have

$$r_f(k_1 + \varepsilon_1, \ldots, k_p + \varepsilon_p) = 1 + \prod_{i=1}^{p} k_i.$$

That this is the value indicated by Conjecture 3.4 is easily checked. For the lower bound, consider $K_{k_1 k_2} = K_{k_1} [K_{k_2}]$. Every edge from this graph comes either from K_{k_1} (between two copies of K_{k_2}) or K_{k_2} (within a copy of K_{k_2}). If we let H_1 contain all such K_{k_1} edges, and H_2 all such K_{k_2} edges, then $H_1 = K_{k_1} [\overline{K_{k_2}}]$ and $H_2 = \overline{K_{k_1}} [K_{k_2}]$. By Lemma 1.5, $\omega_f(H_1) = k_1$ and $\omega_f(H_2) = k_2$. More generally, if we take successive lexicographic products of the K_{k_i}’s, we get a complete graph on $k_1 k_2 \cdots k_p$ vertices. And if we let H_i consist of all edges which come from K_{k_i}, then

$$H_i = \overline{K_{k_1 \cdots k_{i-1}}} [K_{k_i} [K_{k_{i+1} \cdots k_p}]],$$

$$K_{k_1 k_2 \cdots k_p} = H_1 \oplus \cdots \oplus H_p,$$ and
\[\omega_f(H_i) = k_i < k_i + \varepsilon_i. \]

This shows that \(k_1 \cdots k_p \overset{f}{\rightarrow} (k_1 + \varepsilon_1, \ldots, k_p + \varepsilon_p) \) is false.

Finally note that, while choosing the largest \(x_i \) gives the best bound in the case that all arguments are integers, this is not in general the case. To calculate \(r_f(3.1, 3.1, 4.9) \), first note that \(r_f(3.1, 3.1) = 10 \) and \(r_f(3.1, 4.9) = 13 \). Then

\[
\begin{align*}
r_f(3.1, 3.1, 4.9) & \leq \lfloor (r_f(3.1, 3.1) - 1)4.9 \rfloor = 45, \quad \text{but} \\
r_f(3.1, 3.1, 4.9) & \leq \lfloor (r_f(3.1, 4.9) - 1)3.1 \rfloor = 38.
\end{align*}
\]

The second bound is clearly better, even though the largest \(x_i \) was not used as the recursion point.

We now return to...

Proof of Theorem 3.5. We restrict our attention to the case of \(k \geq 3 \), as the \(k = 2 \) case is trivially true. And since we’ve already proved Theorem 3.3, all that remains to be shown is that \(r_f(k, \ldots, k) > k^p - k^{p-1} - \cdots - k - 1 \). As in the 2-color proof, this is accomplished by constructing \(K_{r_f(k, \ldots, k)} = H_1 \oplus \cdots \oplus H_p \) (an edge \(p \)-coloring of the complete graph) such that \(\omega_f(H_i) < k \) for all \(i \). And as before, this is accomplished via the use of circulant graphs. We use the more general form \(\langle S \rangle_n \), and will generally suppress the \(n \) subscript, as its value will be clear in context.

In the following, we will hold \(k \) fixed and let \(p \) vary. Let \(n_p = k^p - k^{p-1} - \cdots - k - 1 \), the order of the complete graph whose edges we are \(p \)-coloring. Notice that \(n_{p+1} = kn_p - 1 \), and since \(n_1 = k - 1 \), we set \(n_0 = 1 \) for consistency. Since the \(H_i \)'s will be chosen to be circulant graphs, they will be vertex transitive, and thus \(\omega_f(H_i) = \frac{n_p}{\alpha(H_i)} \) by Lemma 1.3. Since we want \(\omega_f(H_i) < k \), we let \(\alpha_p \) be the desired value of \(\alpha(H_i) \) in the \(p \)-color case.
Specifically,

\[
\alpha_p = \min \{ \alpha \in \mathbb{N} : \frac{n_p}{\alpha} < k \}
\]

\[
= \min \{ \alpha \in \mathbb{N} : \alpha > \frac{kn_{p-1} - 1}{k} = n_{p-1} - \frac{1}{k} \}
\]

\[
= n_{p-1} ,
\]

with \(\alpha_1 := 1 \). (Henceforth, \(n_{p-1} \) and \(\alpha_p \) are used interchangeably).

Let \(d_p = \left\lfloor \frac{np}{2} \right\rfloor \), so that \(K_{np} = \langle \{1, \ldots, d_p\} \rangle_{np} \). Then in order to have \(K_{np} = H_1 \oplus \cdots \oplus H_p \) where each \(H_i \) is a circulant graph, we require that the union of the connection distance sets of all the \(H_i \)'s be exactly \(\{1, \ldots, d_p\} \). Note that in the following construction, the \(H_i \)'s will not be edge-disjoint (the connection distance sets will not be disjoint). Let us superscript each \(H_i \) with its corresponding \(p \), and then let \(S_i^p \) be the set of connection distances defining \(H_i^p \), i.e., \(H_i^p = \langle S_i^p \rangle \). For a set of integers \(S \) and an integer \(r \), we define \(S + r := \{ s + r : s \in S \} \). Similarly \(r - S := \{ r - s : s \in S \} \).

We begin our construction by defining

\[
S_i := \{ n_{i-1}, \ldots, n_i - n_{i-1} \}
\]

\[
h_i := (k - 1)n_i - 1 = n_{i+1} - n_i = k^{i+1} - 2k^i
\]

and then

\[
S_i^p := \{ s \leq d_p : s \mod h_i \in S_i \}
\]

\[
\subseteq S_i \cup (S_i + h_i) \cup (S_i + 2h_i) \cup \cdots
\]

Notice that, since \(k \geq 3 \), for \(p \geq 1 \) we have that \(kn_{p-1} - 1 \geq 2n_{p-1} \). Then \(n_p/2 \geq n_{p-1} \), and we have

\[
n_p - n_{p-1} \geq \frac{n_p}{2}
\]
\[
\geq \lfloor \frac{n_p}{2} \rfloor = d_p \\
\geq n_{p-1}.
\]

Therefore \(\{n_{p-1}\} \subseteq \{n_{p-1}, \ldots, d_p\} \subseteq \{n_{p-1}, \ldots, n_p - n_{p-1}\} \), and \(S^p_p = \{n_{p-1}, \ldots, d_p\} \).

And since \(n_p - n_{p-1} \leq n_p = n_{p-1} + h_{p-1} \), it follows that \(S^p_{p-1} = S_{p-1} \). Finally, note that \(S^p_i \subset S^{p+1}_i \).

Example

To help illustrate the proof, we consider the case \(k = 4 \). Here we present the items we have defined thus far for \(p = 1, 2, 3, 4 \).

\[
\begin{align*}
n_1 &= 3 \quad n_2 &= 11 \quad n_3 &= 43 \quad n_4 &= 171 \\
d_1 &= 1 \quad d_2 &= 5 \quad d_3 &= 21 \quad d_4 &= 85 \\
h_1 &= 8 \quad h_2 &= 32 \quad h_3 &= 128 \\
\alpha_1 &= 1 \quad \alpha_2 &= 3 \quad \alpha_3 &= 11 \quad \alpha_4 &= 43
\end{align*}
\]

\[
\begin{align*}
S_1 &= \{1, 2\} \\
S_2 &= \{3, 4, 5, 6, 7, 8\} \\
S_3 &= \{11, 12, \ldots, 32\} \\
S_4 &= \{43, 44, \ldots, 128\}
\end{align*}
\]

\[
\begin{align*}
S^1_1 &= \{1\} \\
S^2_1 &= \{1, 2\} \\
S^2_2 &= \{3, 4, 5\} \\
S^3_1 &= \{1, 2, 9, 10, 17, 18\} \\
S^3_2 &= \{3, 4, 5, 6, 7, 8\} \\
S^3_3 &= \{11, 12, \ldots, 21\} \\
S^4_1 &= \{1, 2, 9, 10, 17, 18, 25, 26, 33, 34, 41, 42, 49, 50, 57, 58, 65, 66, 73, 74, 81, 82\} \\
S^4_2 &= \{3, \ldots, 8, 35, \ldots, 40, 67, \ldots, 72\} \\
S^4_3 &= \{11, 12, \ldots, 32\} \\
S^4_4 &= \{43, 44, \ldots, 85\}
\end{align*}
\]

We return to the example of \(k = 4 \) several times to further clarify our constructions.
We now use induction to verify that this construction actually does cover all connection distances \(1, \ldots, d_p\) (i.e., that \(S^p_1 \cup \cdots \cup S^p_p = \{1, \ldots, d_p\}\), and therefore \(K_{n_p} = H^p_1 \oplus \cdots \oplus H^p_p\)). We have \(S^1_1 = \{1, \ldots, d_p\}\) as a base case, so we now suppose that \(S^p_1 \cup \cdots \cup S^p_p = \{1, \ldots, d_p\}\). Since \(S^{p+1}_{p+1} = \{n_p, \ldots, d_{p+1}\}\), we need only show that \(\{1, \ldots, n_p - 1\} \subseteq (S^{p+1}_1 \cup \cdots \cup S^{p+1}_p)\).

Take \(i < p\). Since \(h_i = k^{i+1} - 2k^i\), we compute that

\[
\begin{align*}
n_p &= k^p - k^{p-1} - k^{p-2} - \cdots - k - 1 \\
&= (k^{i+1} - 2k^i)(k^{p-i-1} + \cdots + 1) + k^i - k^{i-1} - \cdots - 1 \\
&= h_i(k^{p-i-1} + \cdots + 1) + n_i,
\end{align*}
\]

so \(n_p \mod h_i = n_i\). Next, if \(x \in S^p_i\), then \(n_p - x \in n_p - S^p_i\), and

\[
(n_p - x) \mod h_i \in [(n_p - S^p_i) \mod h_i] \subseteq [(n_p - S_i) \mod h_i] = \begin{cases} n_i - S_i \mod h_i \\ (n_i - \{n_{i-1}, \ldots, n_i - n_{i-1}\}) \mod h_i \\ \{n_{i-1}, \ldots, n_i - n_{i-1}\} = S_i. \end{cases}
\]

We also know that \(n_p - x < n_p \leq d_{p+1}\), so \(n_p - x \in S^{p+1}_i\). Since \(S^p_1, \ldots, S^p_p\) cover \(\{1, \ldots, d_p\}\) (our induction hypothesis), it then follows that \(S^{p+1}_1, \ldots, S^{p+1}_p\) cover \(\{n_p - d_p, \ldots, n_p - 1\}\) as well as \(\{1, \ldots, d_p\}\) (recall that \(S^p_i \subseteq S^{p+1}_i\)). But since \(d_p = \lfloor \frac{n_p}{2} \rfloor\), we have that \(\{1, \ldots, d_p\} \cup \{n_p - d_p, \ldots, n_p - 1\} = \{1, \ldots, n_p - 1\}\), all of which is covered by \(S^{p+1}_1, \ldots, S^{p+1}_p\), as desired. Thus all connection distances are covered, and it follows that \(K_{n_p} = H^p_1 \oplus \cdots \oplus H^p_p\).
We must now show that $\alpha(H^p_f) \geq \alpha_p$, so that $\omega_f(H^p_f) < k$. We accomplish this by

(i) defining a set $I^p_i \subseteq \{0, 1, \ldots, n_p - 1\}$,

(ii) showing that I^p_i is an independent set in H^p_i, and

(iii) showing that $|I^p_i| \geq \alpha_p$.

(i) Constructing I^p_i

We first define the sets

\[B_i = \{0, 1, \ldots, \alpha_i - 1\}, \]
\[C_i = \{0, 1, \ldots, \alpha_i - 2\}, \] and
\[D_i = B_i \cup (B_i + n_i) \cup \cdots \cup [B_i + (k - 3)n_i] \cup [C_i + (k - 2)n_i]. \]

We then define our independent set I^p_i to be

\[I^p_i = D_i \cup (D_i + h_i) \cup \cdots \cup (D_i + r_{i,p}h_i) \cup [B_i + (r_{i,p} + 1)h_i], \]

where

\[r_{i,p} = \max\{t : \alpha_i - 1 + (t + 1)h_i < n_p\}. \]

That is to say, $r_{i,p}$ is the largest possible value so that no element of I^p_i exceeds n_p. Specifically, $r_{i,p} = k^{p-i-1} + k^{p-i-2} + \cdots + k$. To see this, add n_i (which is much smaller than the span of a D_i, but larger than the span of B_i) to the leading 0 in the last B_i in I^p_i. We get

\[
(r_{i,p} + 1)h_i + n_i = (k^{p-i-1} + \cdots + k)(k - 1)n_i - (r_{i,p} + 1) + n_i
\]

\[
= (k^{p-i} - 1)n_i + n_i - (r_{i,p} + 1)
\]

\[
= (k^{p} - k^{p-1} - \cdots - k^{p-i}) - (k^{p-i-1} + \cdots + k + 1)
\]

\[
= n_p,
\]
so the given value of $r_{i,p}$ implies I_i^p is a subset of $\{0, \ldots, n_p - 1\}$. In the case of $i = p - 1$, this gives $r_{i,p} = 0$, and we just have $I_{p-1}^p = D_{p-1} \cup (B_{p-1} + h_{p-1})$. Finally, we set $I_p^p = B_p = \{0, \ldots, \alpha_p - 1\}$. This completes our construction.

Example
Here, we list independent sets I_i^p and their components in the case of $k = 4$ and $p = 1, 2, 3, 4$. A better illustration of these patterns for $i = 2$ may be found in Figure 6.

\[
\begin{align*}
B_1 &= \{0\} \\
C_1 &= \emptyset \\
D_1 &= B_1 \cup (B_1 + 3) \cup (C_1 + 6) = \{0, 3\} \\
B_2 &= \{0, 1, 2\} \\
C_2 &= \{0, 1\} \\
D_2 &= B_2 \cup (B_2 + 11) \cup (C_2 + 22) = \{0, 1, 2, 11, 12, 13, 22, 23\} \\
B_3 &= \{0, 1, \ldots, 10\} \\
C_3 &= \{0, 1, \ldots, 9\} \\
D_3 &= B_3 \cup (B_3 + 43) \cup (C_3 + 86) = \{0, 1, \ldots, 10, 43, 44, \ldots, 53, 86, 87, \ldots, 95\} \\
h_1 &= 8 \\
h_2 &= 32 \\
h_3 &= 128 \\
I_1^1 &= \{0\} \\
I_2^1 &= \{0, 3, 8\} \\
I_2^2 &= \{0, 1, 2\} \\
I_3^1 &= \{0, 3, 8, 11, 16, 19, 24, 27, 32, 35, 40\} \\
I_3^2 &= \{0, 1, 2, 11, 12, 13, 22, 23, 32, 33, 34\} \quad \text{See Figure 6} \\
I_3^3 &= \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \\
I_4^1 &= \{0, 3, 8, 11, 16, 19, 24, 27, 32, 35, 40, 43, 48, 51, 56, 59, 64, 67, 72, 75, 80, 83, 88, 91, 96, 99, 104, 107, 112, 115, 120, 123, 128, 131, 136, 139, 144, 147, 152, 155, 160, 163, \}
\end{align*}
\]
\(I_2^i = \{0, 1, 2, 11, 12, 13, 22, 23, 32, 33, 34, 43, 44, 45, 54, 55, 64, 65, 66, 75, 76, 77, 86, 87, 96, 97, 98, 107, 108, 109, 118, 119, 128, 129, 130, 139, 140, 141, 150, 151, 160, 161, 162\} \quad \text{See Figure 6}
\)

\(I_3^i = \{0, \ldots, 10, 43, \ldots, 53, 86, \ldots, 95, 128, \ldots, 138\} \)

\(I_4^i = \{0, \ldots, 42\} \)

(ii) \(I_i^p \) is an independent set of \(H_i^p \)

Given a subset \(I \) of the vertices of a circulant graph \(\langle S \rangle \), \(I \) is an independent set of \(\langle S \rangle \) if, for any two \(x, y \in I \), the distance between them along their shorter around the circle (i.e. their “connection distance”) is not in the set \(S \) of connection distances of the graph.

We check that this condition is satisfied in each of three cases, dependent on the value of \(i \).
Figure 6: The desired independent sets I^p_i, for $p = 2$ and $p = 3$, $p = 4$. Note that, while the vertices are drawn here in rows for clarity, they should be imagined to be laid out around the perimeter of a circle.
(ii.a) I_p^p is an independent set of H_p^p

Recall that $S_p^p = \{\alpha_p, \ldots, d_p\}$ and $I_p^p = \{0, \ldots, \alpha_p - 1\}$ (where $\alpha_p - 1 < n_p/2$). The elements of I_p^p are therefore consecutive along the circle, and none are more than $\alpha_p - 1$ steps apart. Since the smallest connection distance is α_p, no pair of vertices in I_p^p can be adjacent.

(ii.b) I_{p-1}^p is an independent set of H_{p-1}^p

Recall that $S_{p-1}^p = S_{p-1} = \{\alpha_{p-1}, \ldots, \alpha_p - \alpha_{p-1}\}$, and that I_{p-1}^p contains exactly one copy of D_{p-1}. To show that I_{p-1}^p is an independent set of H_{p-1}^p, we consider all possible connection distances within I_{p-1}^p, and observe that none of them is found in S_{p-1}^p.

Note that I_{p-1}^p is just the union of translated copies of B_{p-1} and C_{p-1}. Any pair of vertices in the same copy of B or C are at most $\alpha_{p-1} - 1$ steps apart. Since the smallest connection distance (element of S_{p-1}^p) is α_{p-1}, these vertices cannot be adjacent, so we turn our attention to vertices in different copies of B and C. The smallest possible distance between such a pair of vertices occurs between the last vertex u in one block (B or C) and the first vertex v of the next block. We now prove that, in all possible cases, this smallest possible distance is larger than $\alpha_p - \alpha_{p-1}$ (the largest value in S_{p-1}^p).

- u is last vertex in $B_{p-1} + jn_{p-1}$ and v is the first vertex in $B_{p-1} + (j + 1)n_{p-1}$ with $0 \leq j < k - 3$.

In this case we have $u = (\alpha_{p-1} - 1) + jn_{p-1}$ and $v = 0 + (j + 1)n_{p-1}$, so the distance between them is $v - u = n_{p-1} - (\alpha_{p-1} - 1) = \alpha_p - \alpha_{p-1} + 1$, as desired.

- u is the last vertex in $B_{p-1} + (k-3)n_{p-1}$ and v is the first vertex in $C_{p-1} + (k-2)n_{p-1}$.

As above, the distance between u and v is $n_{p-1} - (\alpha_{p-1} - 1) = \alpha_p - \alpha_{p-1} + 1$.
• \(u \) is the last vertex in \(C_{p-1} + (k - 2)n_{p-1} \) and \(v \) is the first vertex in \(B_{p-1} + h_{p-1} \).

Here, \(u = (\alpha_{p-1} - 2) + (k - 2)n_{p-1} \) and \(v = 0 + h_{p-1} = (k - 1)n_{p-1} - 1 \). The distance between them is \(\alpha_p - \alpha_{p-1} + 1 \), as desired.

• \(u \) is the last vertex in \(B_{p-1} + h_{p-1} \) and \(v \) is the first vertex in \(B_{p-1} \).

In this case \(u = h_{p-1} + \alpha_{p-1} - 1 \) and \(v = 0 \). Their distance is \(n_p - (h_{p-1} + \alpha_{p-1} - 1) = \alpha_p - \alpha_{p-1} + 1 \), as desired.

Recapping... any two vertices in the same \(B \) or \(C \) block of \(I^p_{p-1} \) have connection distance less that \(\alpha_{p-1} \), and so less than any value in \(S^p_{p-1} = S_{p-1} \); any two vertices in different blocks of \(I^p_{p-1} \) have connection distance greater than \(\alpha_p - \alpha_{p-1} \), and so greater than any value in \(S^p_{p-1} \). (Keep these facts in mind for the following section.) Thus \(I^p_{p-1} \) is an independent set of \(H_{p-1} \).

(ii.c) \(I^p_i \) is an independent set of \(H^p_i \) for \(1 \leq i < p - 1 \)

Recall that, like \(I^l_{i-1} \), \(I^p_i \) is a collection of translated \(B_i \)’s and \(C_i \)’s. So as before, the distance between any two vertices in distinct blocks of \(I^p_i \) is at least \(\alpha_{i+1} - \alpha_i + 1 \). All such \(B_i \)’s and \(C_i \)’s (except for the final copy of \(B_i \)) are contained in translated copies of \(D_i \), which are spaced at intervals of \(h_i \). If we consider some \(x \in I^p_i \), and we add or subtract \(h_i \) to it, we are essentially moving it to the same position within the next or the previous copy of \(D_i \) (so long as this movement does not push, or “scroll”, \(x \) across the \(n_p - 1 \) to 0 gap).

Now, let \(x, y \in I^p_i \) and let \(d \) denote the distance between them along the shorter arc of the circle. Without loss of generality, assume that \(0 \leq y < x \). Note that \(d = x - y \) or \(d = n_p - (x - y) \), depending on whether or not the shorter arc covers the \(n_p - 1 \) to 0
gap. We must show that $d \notin S^p_i$, and since $S^p_i \mod h_i = S_i$, it is enough to show that $d' := d \mod h_i$ is not in S_i.

We first consider the case where $d = x - y$ (so the shorter arc between y and x does not cover the $n_p - 1$ to 0 gap). We may subtract multiples of h_i from x to give $x' \in I^p_i$ with the property that $0 \leq y \leq x' < y + h_i$. The distance between x' and y is $d' = d \mod h_i$. Now either x' and y are in the same copy of D_i or in consecutive copies of D_i. In either case, they are either in the same B_i or C_i block (so, as before, $d' < \alpha_{i-1}$) or in different B_i or C_i blocks (so $d' > \alpha_{i+1} - \alpha_i$). Therefore $d' \notin S_i$, and we conclude that x and y are not adjacent in H^p_i.

We now turn our attention to the more difficult case of $d = n_p - (x - y)$, where the shorter arc between x and y covers the $n_p - 1$ to 0 gap. Here, we may subtract a multiple of h_i from y and add a multiple of h_i to x to yield vertices x' and y' where y' is in the first copy of D_i in I^p_i and x' is either in the last copy of D_i (i.e., $x' \in D_i + r_{i,p}h_i$) or in the terminal B_i (i.e., $x' \in B_i + (r_{i,p} + 1)h_i$). Setting $d'' = n_p - (x' - y')$, we consider three possible cases.

Case (a): $d'' < h_i$.

In this case, $d'' = d' := d \mod h_i$. Now, x' and y' are at least as far apart as the last and first elements in I^p_i, which, as in the similar case from (ii.b), are at a distance of $\alpha_{i+1} - \alpha_i + 1$. This is too large to be in S_i, so $d' \notin S_i$ and $d \notin S^p_i$.

Case (b): $x' \in D_i + r_{i,p}h_i$, $d'' \geq h_i$.

In this case we add h_i to x' to get x'', but in moving x' across zero, it crosses an extra B_i. This extra distance is subtracted from x''’s relative position within its D_i. This distance
is exactly n_i, which is the space between B_i's within D_i. Therefore x'''s position in the first D_i is exactly one B_i block back\(^{14}\) from the position of x' in the last D_i. We still have x'' “behind” y' since d'' was at least h_i, but now both are contained in the first D_i at a distance of $y' - x'' = d' = d \mod h_i$. Now d' is a distance between two elements of D_i, and we have seen before that $d' \notin S_i$, so that $d' \notin S_i^p$.

Case (c): $x' \in B_i + (r_{i,p} + 1)h_i$, $d'' \geq h_i$.

Write $x' = z + (r_{i,p} + 1)h_i$ where $z \in B_i$, i.e., z is x'''s relative position in the terminal B_i. Adding h_i to this mod n_p gives

$$z + (r_{i,p} + 1)h_i + h_i - n_p = z + h_i - n_i + [(r_{i,p} + 1)h_i + n_i - n_p]$$

$$= z + h_i - n_i$$

$$= (z - 1) + (k - 2)n_i.$$

So after being moved from x' to $x'' = (x' + h_i) \mod n_p$, we have $x'' \in [(k - 2)n_i + \{-1, 0, \ldots, \alpha_i - 2\}]$. Notice that this set contains the C_i in the first (untranslated) D_i, and that y must be in this C_i (otherwise x' and y' would have been closer than h_i, putting us in Case (a)). So x'' and y' are both in this set $[(k - 2)n_i + \{-1, 0, \ldots, \alpha_i - 2\}]$, and the distance between any two elements in it is at most $\alpha_i - 1 < s$ for all $s \in S_i$, so as before, $d \notin S_i^p$.

Thus in all cases, $d \notin S_i^p$, i.e., no connection distance between points in I_i^p is found in S_i^p, so I_i^p must be an independent set of $\langle S_i^p \rangle = H_i^p$.

\[(iii) \quad |I_i^p| = \alpha_p \]

\(^{14}\)We do not allow x' to be in the first B_i block of the last D_i: If it were, a shift forward by h_i would move it into the terminal B_i in I_i^p. This situation is covered separately in Case (c) below.
\[|I_i^p| = (r_{i,p} + 1)|D_i| + |B_i| \]
\[= (r_{i,p} + 1)([k - 2]|B_i| + |C_i|) + \alpha_i \]
\[= (r_{i,p} + 1)(k - 2)\alpha_i + \alpha_i - 1 + \alpha_i \]
\[= (r_{i,p} + 1)(k\alpha_i - 1 - \alpha_i) + \alpha_i \]
\[= (r_{i,p} + 1)\alpha_{i+1} - r_{i,p}\alpha_i \]
\[= (r_{i,p} + 1)(k^i - k^{i-1} - \cdots - 1) - r_{i,p}(k^{i-1} - k^{i-2} - \cdots - 1) \]
\[= (r_{i,p} + 1)k^i - (2r_{i,p} + 1)k^{i-1} - k^{i-2} - \cdots - 1 \]
\[= [r_{i,p} + 1]k - (2r_{i,p} + 1][k^{i-1} - k^{i-2} - \cdots - 1] \]
\[= [(k^{p-i} + \cdots + k) - (2k^{p-i-1} + \cdots + 2k + 1)]k^{i-1} - k^{i-2} - \cdots - 1 \]
\[= [k^{p-i} - k^{p-i-1} - \cdots - k - 1]k^{i-1} - k^{i-2} - \cdots - 1 \]
\[= k^{p-1} - k^{p-2} - \cdots - k^{i-1} - k^{i-2} - \cdots - 1 \]
\[= \alpha_p \]

so \(I_i^p \) is of the desired size, even for \(i = p - 1 \) \((r = 0)\). Thus we have shown that \(H_i^p \) has an independent set of size \(\alpha_p \), which is exactly what we needed in order to verify that \(\omega_f(H_i^p) < k \), and so we are done. \(\square \)

3.3 A Relaxation of Fractional Ramsey Numbers

When we take \(n \to (k, l) \) to mean that \(K_n = H_1 \oplus H_2 \) implies \(\omega(H_1) \geq k \) or \(\omega(H_2) \geq l \), we could equally well write this as “If \(G = H_1 \oplus H_2 \) and \(\omega(G) \geq n \), then \(\omega(H_1) \geq k \) or \(\omega(H_2) \geq l \).” We can now fractionalize the entirety of this statement, and take \(z \xrightarrow{a} (x, y) \)
to mean “If $G = H_1 \oplus H_2$ and $\omega_f(G) \geq z$, then $\omega_f(H_i) \geq x$ or $\omega_f(H_2) \geq y$.” We then define $r^*(x, y)$ to be the infimum of all z for which this statement holds. We may also define the multicolor version of this, where $z \rightarrow (x_1, \ldots, x_p)$ means that, if $G = H_1 \oplus \cdots \oplus H_p$ and $\omega_f(G) \geq z$, then $\omega_f(H_i) \geq x_i$ for some i. Likewise, $r^*(x_1, \ldots, x_p)$ is the infimum of all z for which $z \rightarrow (x_1, \ldots, x_p)$ is true.

To achieve our result, we need the following lemma.

Lemma 3.6 If $G = H_1 \oplus H_2$, then $\omega_f(G) \leq \omega_f(H_1)\omega_f(H_2)$.

Proof. We prove this statement in the form $\chi_f(G) \leq \chi_f(H_1)\chi_f(H_2)$. Let a_1, a_2, b_1, b_2 be positive integers such that $\chi_f(H_i) = a_i/b_i = \chi_{b_i}(H_i)/b_i$ for $i = 1, 2$ (the proof of Lemma 1.1 guarantees that such integers exist). Let c_i be a proper b_i-fold coloring of H_i using a set of a_i colors, where $c_i(v)$ is the set of b_i colors assigned to $v \in V(G)$, and if $uv \in E(H_i)$ then $c_i(u) \cap c_i(v) = \emptyset$.

We may now construct a b_1b_2-fold coloring of G using a set of a_1a_2 colors: assign to the vertex v the set of colors $c_1(v) \times c_2(v)$. Now, if $uv \in E(G)$, then $uv \in E(H_1)$ or $uv \in E(H_2)$, which in turn implies that either $c_1(u) \cap c_1(v) = \emptyset$ or $c_2(u) \cap c_2(v) = \emptyset$. This guarantees that $c_1(u) \times c_2(u)$ and $c_1(v) \times c_2(v)$ are disjoint, and so we have a proper b_1b_2-fold coloring of G. This shows that $\chi_{b_1b_2}(G) \leq a_1a_2$, and so

$$\chi_f(G) = \inf_b \frac{\chi_b(G)}{b} \leq \frac{\chi_{b_1b_2}(G)}{b_1b_2} \leq \frac{a_1a_2}{b_1b_2} = \chi_f(H_1)\chi_f(H_2). \square$$

Theorem 3.7 For real numbers $x_1, \ldots, x_p > 2$, we have $r^*(x_1, \ldots, x_p) = x_1x_2 \cdots x_p$.
Proof. For any G with $\omega_f(G) \geq x_1 \cdots x_p$ and any decomposition $G = H_1 \oplus \cdots \oplus H_p$, if we suppose that $\omega_f(H_i) < x_i$ for all i, then Lemma 3.6 (applied repeatedly) implies that $\omega_f(G) < x_1 \cdots x_p$. This is a contradiction, and so we must have $\omega_f(H_i) \geq x_i$ for some i, as desired. Therefore $x_1 \cdots x_p \overset{*}{\rightarrow} (x_1, \ldots, x_p)$, and $r^*(x_1, \ldots, x_p) \leq x_1 \cdots x_p$.

We prove the lower bound by inducting on p.

BASE \bullet $p = 1$:

That $r^*(x) = x$ is immediate.

INDUCTION HYPOTHESIS \bullet Suppose that $r^*(x_1, \ldots, x_{p-1}) = x_1 \cdots x_{p-1}$:

Take any $z < x_1 \cdots x_p$. We must find a graph G and a decomposition $G = H_1 \oplus \cdots \oplus H_p$ where $\omega_f(G) \geq z$ and $\omega_f(H_i) < x_i$ for all i. To start, we choose rational q_1 and q_2 such that

$$2 < q_1 < x_1 \cdots x_{p-1}, \quad 2 < q_2 < x_p \quad \text{and} \quad q_1q_2 \geq z.$$

By our induction hypothesis, there is a graph with decomposition $G_{p-1} = H'_1 \oplus \cdots \oplus H'_{p-1}$ such that $\omega_f(G_{p-1}) \geq q_1$ but $\omega_f(H'_i) < x_i$ for each $i = 1, \ldots, p - 1$. Recalling that $\omega_f(C_{(q_2)}) = q_2$, we take $G = C_{(q_2)}[G_{p-1}]$ (wherein each vertex of $C_{(q_2)}$ is replaced with a copy of G_{p-1}), so we have $\omega_f(G) \geq q_1q_2 \geq z$ by Lemma 1.5. Let $C_{(q_2)}$ have m vertices, and G_{p-1} have n vertices. We may partition the edges of G into the set of edges within copies of G_{p-1}, and the set of edges between copies of G_{p-1}. The former yields a graph of the form

$$\overline{K_m[G_{p-1}]} = \overline{K_m[H'_1 \oplus \cdots \oplus H'_{p-1}]} = \overline{K_m[H'_1]} \oplus \cdots \oplus \overline{K_m[H'_{p-1}]};$$

while the later is $C_{(q_2)}[\overline{K_n}]$. So if we set $H_i = \overline{K_m[H'_i]}$ for $i = 1, \ldots, p - 1$, and $H_p = \overline{K_m[H'_{p-1}]}$.

This construction shows that \(z \xrightarrow{a} (x_1, \ldots, x_p) \) is false, and so \(r^*(x_1, \ldots, x_p) \geq x_1 x_2 \cdots x_p \). Since this relation is implied by our induction hypothesis, we are done.

3.4 \(b \)-Ramsey Numbers

We may define the \(b \)-Ramsey number of a graph by replacing \(\omega \) in the Ramsey definition with \(\omega'_b \) instead of \(\omega_f \). Recall from Section 1.1 that

\[
\omega'_b(G) = \max 1, \mathbf{y} \text{ s.t. } M' \mathbf{y} \leq 1, \quad \mathbf{y} \in \{0, \frac{1}{b}, \frac{2}{b}, \ldots, \frac{b}{b}\}^n.
\]

A \(b \)-clique of \(G \) is a function \(g_b : V(G) \to \{0, \frac{1}{b}, \frac{2}{b}, \ldots, \frac{b}{b}\} \) such that \(\sum_{v \in I} g_b(v) \leq 1 \) for all \(I \in \mathcal{I} \). The weight, or value, of this \(b \)-clique is \(w(g_b) = \sum_{v \in V(G)} g_b(v) \), and \(\omega'_b(G) \) is the minimum\(^{15} \) value of \(w(g_b) \) taken over all \(b \)-cliques of \(G \).

We let \(n \xrightarrow{b} (x, y) \) stand for the statement “If \(K_n = H_1 \oplus H_2 \), then \(\omega'_b(H_1) \geq x \) or \(\omega'_b(H_2) \geq y \).” Then the \(b \)-Ramsey number \(r_b(x, y) \) is the least positive integer \(n \) for which this statement is true.

Because \(\omega_f(G) \geq \omega'_b(G) \geq \omega(G) \) for any positive integer \(b \), it immediately follows that \(r_f(x, y) \leq r_b(x, y) \leq r(x, y) \). In general, because \(r_b(x, y) \) involves a discrete optimization invariant similar to \(r(k, l) \), we expect computation of these values to be difficult (as opposed to the relative ease of calculating \(r_f(x, y) \)). We do, however, have two principle results

\(^{15}\text{Since we are not discussing infinite graphs, we do mean “minimum” and not “infimum”.} \)
regarding the limiting behavior of r_b. The first of these tells us that $r_2(k, k)$, like $r(k, k)$, grows exponentially in k, although the bound achieved on this growth rate is considerably smaller.

Lemma 3.8 The edge set of K_n contains at least $\frac{1}{6}(n - 3)(n - 4)$ edge-disjoint triangles.

Proof. It is a long-known result\(^\text{16}\) that there is a Steiner triple system on n elements iff $n \equiv 1$ or $3 \mod 6$. In other words, for sets of size $n \equiv 1$ or $3 \mod 6$, we may find a collection T of size 3 subsets such that every pair of elements appears in exactly one member of T. This is equivalent to saying that T partitions $E(K_n)$ into triangles. Such a partition necessarily has $n(n - 1)/6$ triangles. Even if $n \equiv 0 \mod 6$, we may still partition the edges of a K_{n-3} subgraph into $(n - 3)(n - 4)/6$ triangles, giving the desired result. □

Note that, while the above value is not always best possible, it still approaches $n^2/6$ asymptotically, which clearly is the best possible limit.

Theorem 3.9 If positive integers n and k satisfy

$$\left(\begin{array}{c} n \\ k \end{array} \right) \left(\frac{7}{8} \right)^{(k-3)(k-4)/6} < 1,$$

then $r_2(k, k) > n$.

Proof. We start by defining

$$\omega_2(G) = \max 1 \cdot \mathbf{y} \text{ s.t. } M'y \leq 1, \quad \mathbf{y} \in \{0, \frac{1}{2}\}^n,$$

which is identical to $\omega'_2(G)$, except that we are only allowed to assign weights 0 or 1/2, and not 1, to vertices. We refer to feasible solutions to this program as half-cliques. Note

\(^{16}\)First shown by Kirkman around 1850; see [1].
that, in any such half-clique, the set of vertices receiving weight 1/2 must be triangle-free, and in fact, \(\bar{\omega}_2(G) \) is 1/2 times the number of vertices in the largest triangle-free induced subgraph of \(G \). Now, the set of positively weighted vertices in any 2-clique must also be triangle free, but here we are using weights 1/2 and 1. Multiplying \(\bar{\omega}_2(G) \) by 2 is equivalent to assigning weight 1 to every vertex in the largest triangle-free subgraph, so we must have \(\omega'_2(G) \leq 2\bar{\omega}_2(G) \).

We now employ a probabilistic technique similar to those used to calculate lower bounds for ordinary Ramsey numbers (see, for instance, [13]). Fix \(n \), and let us red/blue color the edges of \(K_n \), giving any edge red or blue with probability 1/2, independent of the coloring of any other edges. For any size \(k \) subset \(S \) of \(V(K_n) \), define the events

\[
A_S = \{ E(S) \text{ has no blue triangle} \}, \\
B_S = \{ E(S) \text{ has no red triangle} \}, \\
B = \{ K_n \text{ contains a monochromatic weight } k/2 \text{ half-clique} \} = \bigcup_{|S|=k} (A_S \cup B_S).
\]

Now, the probability that any given triangle is not all blue is 7/8, and any size \(k \) set \(S \) contains at least \((k-3)(k-4)/6 \) edge-disjoint triangles by Lemma 3.8, so \(\Pr\{A_S\} = \Pr\{B_S\} < (7/8)^{(k-3)(k-4)/6} \). So we have

\[
\Pr\{B\} = \Pr \left\{ \bigcup_{|S|=k} (A_S \cup B_S) \right\} \leq 2 \sum_{|S|=k} \Pr\{A_S\} < 2 \binom{n}{k} \left(\frac{7}{8}\right)^{(k-3)(k-4)/6}.
\]

If we choose \(n \) small enough so as to make this quantity less than 1, then \(\Pr\{B^c\} > 0 \), so there must exist some edge 2-coloring of \(K_n \) with no monochromatic half-cliques of
weight \(k/2 \). That is, there is some \(K_n = H_1 \oplus H_2 \) with \(\bar{\omega}_2(H_i) < k/2 \) for \(i = 1, 2 \). Since \(\omega'_2(H_i) \leq 2\bar{\omega}_2(H_i) \), we know that \(n \to (k, k) \) is false. \(\square \)

Let us perform a rough asymptotic analysis of \(n \) versus \(k \) to find a lower bound on \(r_2(k, k) \). If we take \(\binom{n}{k} \approx n^k \) and \((7/8)^{(k-3)(k-1)/6} \approx (7/8)^{k^2/6} \), then

\[
2 \left(\frac{n}{k} \right)^{[k(k-1)/6]} < 1 \quad \text{becomes} \quad 2n^k \left(\frac{7}{8} \right)^{k^2/6} < 1.
\]

Then \(2n^k < (8/7)^{k^2/6} \), which gives, approximately, \(n < (8/7)^{k^2/6} \). So we have the approximate bound of \(r_2(k, k) > \left(\frac{(8/7)^{1/6}}{k} \right) \\approx 1.0222k \). While this is not nearly as good as the \(\sqrt{2} \) lower bound for \(r(k, k) \), we do know that \(r(k, k) > r_2(k, k) \) in general, and this does at least establish the exponential growth of \(r_2(k, k) \).

Since \(\omega'_b(G) \to \omega_f(G) \) as \(b \to \infty \) for any graph \(G \) (Theorem A.2), we wonder if the same holds for \(b \)- and fractional Ramsey numbers, i.e. does \(r_b(x, y) \to r_f(x, y) \)? Note that, since \(r_b \) and \(r_f \) are integer valued, convergence occurs iff there exists a \(B \in \mathbb{N} \) for which \(b \geq B \) implies \(r_b = r_f \).

Theorem 3.10 \(r_b(x, y) \to r_f(x, y) \) as \(b \to \infty \) if and only if \((x, y) \) is not a discontinuity point of the function \(r_f \).

Proof. Recall \(x, y, k, l, \varepsilon, \delta \) and \(q = \min \{ [\varepsilon l], [\delta k] \} \) of Theorem 3.1. Notice that if we hold \(k \) and \(l \) fixed, \(\varepsilon \) and \(\delta \) may range freely between multiples of \(1/l \) and \(1/k \), respectively, without changing the value of \(q \). Thus \(r_f(x, y) \) is constant over these rectangular regions of the plane. These rectangles are closed along their upper and right edges, and open on their lower and left edges. All discontinuity points of \(r_f(x, y) \) lie on these edges, though not all
points on these edges are discontinuity points. To be more precise, \((x, y)\) is a discontinuity point of \(r_f\) if \(r_f(x + \epsilon, y + \epsilon) > r_f(x, y)\) for all \(\epsilon > 0\).

\((\implies)\) **Lemma 3.11** If \((x, y)\) is a discontinuity point of \(r_f\) with \(r_f(x, y) = n\), then there exists a decomposition \(K_n = H_1 \oplus H_2\) such that \(\omega_f(H_1) \leq x\) and \(\omega_f(H_2) \leq y\).

Proof. Suppose to the contrary. Then for every such decomposition, either \(\omega_f(H_1) > x\) or \(\omega_f(H_2) > y\). There are only a finite number of such decompositions, so let \(\epsilon = \min\{\omega_f(H_1) - x, \omega_f(H_2) - y\}\), taken over all such positive values for all such decompositions. Thus for any decomposition \(K_n = H_1 \oplus H_2\), we know that \(\omega_f(H_1) \geq x + \epsilon\) or \(\omega_f(H_2) \geq y + \epsilon\). But this tells us that \(r_f(x + \epsilon, y + \epsilon) = n\), contradicting the fact that \((x, y)\) is a discontinuity point of \(r_f\). Our supposition to the contrary is therefore false. \(\Box\)

For discontinuity point \((x, y)\), take the decomposition \(K_n = H_1 \oplus H_2\) indicated by Lemma 3.11. For \(i = 1, 2\), let \(\omega_f(H_i) = c_i/d_i\), where \(c_i/d_i\) is a lowest terms fraction. Let \(b\) be any positive integer such that neither \(d_1\) nor \(d_2\) divide \(b\). Then there is no integer \(a_i\) such that \(a_i/b_i = c_i/d_i\). Since \(\omega'_b(G)\) must always be a multiple of \(1/b\), we cannot have \(\omega'_b(H_i) = c_i/d_i\). Thus

\[
\omega'_b(H_1) < \omega_f(H_1) \leq x \quad \text{and} \quad \omega'_b(H_2) < \omega_f(H_2) \leq y
\]

and so \(r_b(x, y) > n = r_f(x, y)\). Since we may choose such \(b\) to be arbitrarily large, we have \(r_b \not\to r_f\) at this \((x, y)\).

\((\iff)\) **Lemma 3.12** For any graph \(G\) and \(b \in \mathbb{N}\), \(\omega'_b(G) > \omega_f(G) - |V(G)|/b\).
Proof. Start with a maximum fractional clique, and round all weights on vertices down to the nearest multiple of $1/b$. The result is a valid b-clique, and total weight less than $|V(G)|/b$ has been removed. □

Let $r_f(x, y) = n$ be constant over all $x \in (x_1, x_2], y \in (y_1, y_2]$. Choose any specific $x \in (x_1, x_2)$ and $y \in (y_1, y_2)$, so that (x, y) is not a discontinuity point of r_f. Let $d = \min \{x_2 - x, y_2 - y\} > 0$, and choose $B \in \mathbb{N}$ such that $n/B < d$. Now, for any decomposition $K_n = H_1 \oplus H_2$, either $\omega_f(H_1) \geq x_2$ or $\omega_f(H_2) \geq y_2$. Then for any $b \geq B$, either

$$\omega_b(H_1) > \omega_f(H_1) - n/b \geq x_2 - d \geq x_2 - (x_2 - x) = x$$

or

$$\omega_b(H_2) > \omega_f(H_2) - n/b \geq y_2 - d \geq y_2 - (y_2 - y) = y,$$

so $n \xrightarrow{b} (x, y)$. Thus $r_b(x, y) = r_f(x, y)$ for all $b \geq B$, and so $r_b \to r_f$ at (x, y). □

Clearly, there is still much work that could be done in the area of b-Ramsey numbers. Even though $r_b(x, x)$ (presumably) grows exponentially in x, for almost any fixed x we have $r_b(x, x) \to r_f(x, x)$, a function which only grows quadratically in x. There seems to be some interesting ground to cover in comparing the growth rates of $r_b(x, y)$ in x and y versus b.

3.5 Lovász-ϑ Ramsey Numbers

The fractional clique number of a graph is a relaxation of the ordinary clique number; the Lovász-ϑ number of a graph, denoted $\vartheta(G)$, represents a weaker relaxation of clique
number. That is,
\[\omega(G) \leq \vartheta(G) \leq \omega_f(G) \leq \chi(G) \]
for any finite graph \(G \). \(\vartheta(G) \) was introduced by Lovász in 1977 (see [10]), and has been well studied since then (see [7] for an overview of history and results). We will define Lovász-\(\vartheta \) Ramsey numbers by replacing clique number with the Lovász-\(\vartheta \) number\(^{17}\).

To define \(\vartheta(G) \), we first need to define orthogonal labelings. An *orthogonal labeling* of a graph \(G = (V, E) \) is an assignment of a unit\(^{18}\) vector \(a_v \) to each \(v \in V \) such that \(a_u \cdot a_v = 0 \) whenever \(uv \in E \). That is, adjacent vertices are assigned perpendicular vectors, and \(||a_v|| = 1 \) for all \(v \in V \). These vectors may be of any fixed dimension \(d \). The *cost* of a vector in such a labeling is defined to be \(c(a_v) = a_{1v}^2 \), where \(a_{1v} \) is the first entry of \(a_v \). The cost of the labeling, denoted \(c(a) \), is just the vector of costs (whose \(v \)-th entry is \(c(a_v) \)).

Recall the integer (ID) and linear (DP) duals defining \(\omega \) and \(\omega_f \) from Section 1.1. Let us refer to the feasible regions of these programs as \(\Omega(G) \) and \(\Omega_f(G) \), respectively. We now define the region
\[\Theta(G) = \{ y \in \mathbb{R}^n : c(a) \cdot y \leq 1 \text{ for all orthogonal labelings } a \text{ of } G, \quad y \geq 0 \}. \]

Similarly to \(\omega \) and \(\omega_f \), we define
\[\vartheta(G) = \max 1 \cdot y \text{ s.t. } y \in \Theta(G). \]

It is easy to show\(^{19}\) that \(\Omega(G) \subseteq \Theta(G) \subseteq \Omega_f(G) \), from which \(\omega(G) \leq \vartheta(G) \leq \omega_f(G) \).

\(^{17}\)Note: Our definitions of \(\vartheta \) and orthogonal labelings of \(G \) are more commonly taken to be those of \(\overline{G} \). We switch the roles of these two quantities to maintain consistency with our previous work. As Ramsey numbers are symmetric in the usage of \(G \) and \(\overline{G} \), our choice of definitions will not affect our Ramsey results.

\(^{18}\)Requiring unit vectors is not standard in the definition of orthogonal labelings, but is done without loss of generality for our purposes; see [7].

\(^{19}\)See Lemma 2 from [7].
immediately follows.

We now take \(n \rightarrow (x, y) \) to mean that, whenever \(K_n = H_1 \oplus H_2 \), we must have \(\vartheta(H_1) \geq x \) or \(\vartheta(H_2) \geq y \). Then the \(\vartheta \)-Ramsey number \(r_\vartheta(x, y) \) is the least positive integer \(n \) for which \(n \rightarrow (x, y) \). While we cannot compute \(r_\vartheta \) exactly as we did with \(r_f \), we can show that it’s value is nearly the same as \(r_f \). Our result follows easily from the following lemma\(^{20}\).

Lemma 3.13 For a graph \(G \) on \(n \) vertices, \(\vartheta(G)\vartheta(G) \geq n \); if \(G \) is vertex transitive, then equality holds. \(\square \)

Theorem 3.14 \(r_f(x, y) \leq r_\vartheta(x, y) \leq \lfloor xy \rfloor \).

Proof. Fix \(x, y \geq 2 \). Let \(n = r_\vartheta(x, y) \), and let \(K_n = H_1 \oplus H_2 \) be any edge 2-coloring of \(K_n \). Then \(\omega_f(H_1) \geq \vartheta(H_1) \geq x \) or \(\omega_f(H_2) \geq \vartheta(H_2) \geq y \), and so \(n \rightarrow (x, y) \). Thus it follows that \(r_f(x, y) \leq r_\vartheta(x, y) \).

Now take \(n = \lfloor xy \rfloor \), and any decomposition \(K_n = H_1 \oplus H_2 \) (with \(H_1 = \overline{H_2} \)). Either \(\vartheta(H_1) \geq x \) or \(\vartheta(H_1) < x \) implies that \(\vartheta(H_2) \geq \frac{n}{\vartheta(H_2)} > \frac{xy}{x} = y \) by Lemma 3.13. Thus \(r_\vartheta(x, y) \leq \lfloor xy \rfloor \). \(\square \)

Since \(r_f(x, y) \) is very nearly as large as \(xy \), we have fairly tight bounds on \(r_\vartheta(x, y) \). It is interesting to note the closeness of the values of \(r_\vartheta \) to \(r_f \), even though \(\vartheta \) lies somewhere between \(\omega \) and \(\omega_f \).

Note that we did not use the second part of Lemma 3.13. If we could establish values of \(\vartheta \) for a large class of vertex transitive graphs (as we did with \(C_{n,m} \) for \(\omega_f \)), we could likely achieve even more accurate bounds on \(r_\vartheta \).

\(^{20}\)See Lemma 23 and Theorem 25 from [7].
4 Fractional Dimension of Posets from Trees

In this last chapter, we switch gears a little bit, and fractionalize the dimension of posets. We start with a few simple definitions to develop the language of posets. A binary relation on a set X is called a partial order if it is reflexive, antisymmetric, and transitive. A partially ordered set (or “poset”) $P = (X, \leq)$ consists of some ground set X and a partial order \leq on X. A pair of elements $x, y \in X$ are incomparable if $x \not\leq y$ and $y \not\leq x$. Such an incomparable (ordered) pair (x, y) is a critical pair if, for all $a, b \in X$ such that $a \leq x$ and $y \leq b$ (but not $(a, b) = (x, y)$), we have $a \leq b$. The idea of critical pairs plays an important role in this chapter, so we will let $C(P)$ (or just C) denote the set of critical pairs of P.

We may also think of \leq as a subset of $X \times X$. A partial order L on X is a total order if for any $a, b \in X$, either $(a, b) \in L$ or $(b, a) \in L$. A total order L is a linear extension of \leq if \leq is a subset of L. A realizer of a poset P is a collection of linear extensions $R = \{L_1, \ldots, L_d\}$ of \leq whose intersection is \leq. That is, for any incomparable pair $x, y \in X$, there are $L_i, L_j \in R$ with $(x, y) \in L_i$ and $(y, x) \in L_j$. Finally, the dimension of P is defined as the size of the smallest realizer of P, and is denoted $\dim(P)$.

It is easily shown that a collection of linear extensions $\{L_1, \ldots, L_d\}$ is a realizer if and only if, for every critical pair (x, y), there is some L_i containing (y, x). Even though x and y are incomparable, the critical pair (x, y) behaves as if $x \leq y$ relative to the rest of the poset, and so if $y < x$ in L_i, we say that L_i reverses (x, y). In other words, $\{L_1, \ldots, L_d\}$ is a realizer iff it reverses every critical pair.

21 The concept of dimension of a poset was first introduced by Dushnik and Miller [3].
22 See [14].
4.1 Fractional Dimension

We may now formulate dimension as an integer programming problem, just as we did chromatic number. For the poset $P = (X, \leq)$, let $\mathcal{L} = \{L_1, \ldots, L_m\}$ be the set of all linear extensions of \leq, and $C = \{c_1, \ldots, c_n\}$ the set of all critical pairs. Let M be the critical pair/linear extension incidence matrix, with rows indexed by C and columns indexed by \mathcal{L}. The i, j entry is a 1 exactly when c_i is reversed in L_j (henceforth denoted by $c_i \preceq L_j$), and is 0 otherwise. Then, just as with ordinary/fractional chromatic number/clique number, we get pairs of integer and linear programs defining ordinary/fractional dimension and its dual parameter, which we denote $\kappa(P)$:

$$\dim(P) = \min 1 \cdot x \quad \text{s.t.} \quad Mx \geq 1, \quad x \geq 0, \quad x \in \mathbb{Z}^m$$

$$\kappa(P) = \max 1 \cdot y \quad \text{s.t.} \quad M^T y \leq 1, \quad y \geq 0, \quad y \in \mathbb{Z}^n$$

$$\dim_f(P) = \min 1 \cdot x \quad \text{s.t.} \quad Mx \geq 1, \quad x \geq 0, \quad x \in \mathbb{R}^m$$

$$\kappa_f(P) = \max 1 \cdot y \quad \text{s.t.} \quad M^T y \leq 1, \quad y \geq 0, \quad y \in \mathbb{R}^n$$

Feasible solutions to the LPs are referred to as fractional realizers and fractional critical pair packings (or, henceforth, simply “fractional packings”)\(^{23}\), respectively. As before, $\kappa(P) \leq \kappa_f(P) = \dim_f(P) \leq \dim(P)$ for any finite poset P, and the middle “=” is only “\leq” if P is infinite.

Again, to facilitate our discussion, particularly with respect to infinite posets, we reformulate these definitions. Define a fractional realizer of P to be a mapping $f : \mathcal{L} \to [0, 1]$ such that for each $c \in C$ we have $\sum_{L \in \mathcal{L} : c \preceq L} f(L) \geq 1$. The weight of this realizer is

\(^{23}\)“Fractional critical pair packing” is, for lack of a better term, used in reference to the hypergraph covering/packing formulation presented in [11].
\[w(f) = \sum_{L \in \mathcal{L}} f(L), \] and fractional dimension is

\[\dim_f(P) = \inf \{ w(f) : f \text{ a fractional realizer of } P \}. \]

Again, this definition matches the linear programming formulation when \(P \) is finite, but is still well-defined when \(P \) is infinite.

We similarly modify the definition of fractional packing number: a fractional packing of \(P \) is a mapping \(g : C \to [0, 1] \) such that for each \(L \in \mathcal{L} \) we have \(\sum_{c \in L} g(c) \leq 1 \). The weight of this mapping is \(w(g) = \sum_{c \in C} g(c) \), and fractional packing number is

\[\kappa_f(P) = \sup \{ w(g) : g \text{ a fractional packing of } G \}. \]

which is just the dual linear program formulation if \(P \) is finite.

We also have a \(b \)-fold version of fractional dimension, as follows: a collection of linear extensions \(\{L_1, \ldots, L_t\} \) is a \(b \)-fold realizer if and only if every critical pair is reversed in (at least) \(b \) of the \(L_i \)'s. Then the \(b \)-fold dimension of \(P \), denoted \(\dim_b(P) \), is the size of the smallest \(b \)-fold realizer of \(P \). And, as before, we may also write \(\dim_f(P) = \lim_{b \to \infty} \frac{\dim_b(P)}{b} \). The proof that the two definitions agree is analogous to that for \(\chi_f \), even in the case of infinite posets. A more complete treatment of fractional dimension may be found in Brightwell and Scheinerman [2].

4.2 Posets of Graphs

We may derive a poset \(P(G) \) from a graph \(G \) as follows. The ground set is \(X = V(G) \cup E(G) \), and the only (non-equality) relations are of the form \(v < e \), where vertex \(v \) is an endpoint of edge \(e \). What are the critical pairs of this poset?
For $u, v, w \in V(G)$, $vw \in E(G)$, if (u, vw) is a critical pair, then $a \leq u$ and $vw \leq b$ implies $a \leq b$. But $a \leq u$ implies $a = u$, and $vw \leq b$ implies $vw = b$, so $(a, b) = (u, vw)$. So if (u, vw) is an incomparable pair, there are no candidate a and b, and (u, vw) vacuously satisfies the definition of a critical pair. So any (vertex,edge) pair is a critical pair so long as the vertex isn’t in the edge.

For $u, v \in V(G)$, if (u, v) is a critical pair, then $a \leq u$ and $v \leq b$ implies $a \leq b$. But $a \leq u$ implies $a = u$, so we require that $v \leq b$ implies $u \leq b$, that is, everything above v is also above u. Since all edges incident to v are above v, all these edges must also be above u. This can only happen if v is a leaf (vertex of degree 1) and u the other end of v’s edge (u is henceforth referred to as a “branch”). This is the only possible type of (vertex,vertex) critical pair.

There are no (edge,vertex) critical pairs, for this would require each of the edge’s vertices to be \leq the critical pair vertex, which can’t happen. Also, there are no (edge,edge) critical pairs, for this would require both of the first edge’s vertices to be below the second edge, which only occurs if they are the same edge, and then not incomparable.

In order to establish the fractional dimension of one of our posets (or class of posets), we need to utilize the same approach we’ve seen before: bounding \dim_f from above with fractional realizers, and bounding it below with fractional packings. Of course, for any given poset of a graph, there are a huge number of distinct linear extensions that must be considered in building a fractional realizer\(^{24}\), so this is not a calculation we wish to undertake for most specific posets. We shall content ourselves with the limiting value of \dim_f for certain classes of trees (including general trees). This is facilitated by the

\(^{24}\text{We shall see that there are, roughly, } |V(G)|! \text{ maximal linear extensions.}\)
Lemma 4.1 Given graphs $G_1 \subset G_2$, it follows that

$$\dim_f(P(G_1)) \leq \dim_f(P(G_2)).$$

Proof. Any incomparable pair in $P(G_1)$ is still an incomparable pair in $P(G_2)$ (adding vertices and edges can’t add or alter the $v < uv$ relations between existing vertices and edges). So for an incomparable pair (a, b) in $P(G_1)$, this pair must have $b < a$ in linear extensions of total weight at least 1 in any fractional realizer of $P(G_2)$, and this fact holds when these linear extensions are restricted to elements of $P(G_1)$. Thus any fractional realizer of $P(G_2)$, when restricted to elements and relations is $P(G_1)$, is also a fractional realizer of $P(G_3)$. Given this, our desired result is immediate. □

Because of this, we limit our attention to posets of arbitrarily large graphs, and simply prove tight upper bounds. For instance, showing that $\lim_{q \to \infty} \dim_f(P(S_q)) = 1 + \sqrt{2}$ (where S_q is the q-star) proves that $1 + \sqrt{2}$ is a tight upper bound on \dim_f for the posets of all finite stars.

A maximal linear extension is one for which the set of critical pairs it reverses is not a proper subset of the set of critical pairs reversed by any other linear extension. Just as we only needed to consider maximal independent sets for the fractional coloring problem (see Lemma 1.2), we need only consider maximal linear extensions for the fractional dimension problem:

Lemma 4.2 The values of \dim_f and κ_f don’t change if we reformulate their definitions taking \mathcal{L} to be the set of all maximal linear extensions.
The proof is analogous to that of Lemma 1.2. Further, in our current environment, we have:

Lemma 4.3 The critical pairs reversed in a maximal linear extension of the poset of any graph are fully determined by the ordering of \(V(G) \) within it.

Proof. We wish to show that, in constructing a maximal linear extension, once we’ve specified the order of the vertices, we can then specify where to place the edges without losing maximality. Given an edge \(uw \in X \), the only two relations in \(P \) involving \(uw \) are \(u < uw \) and \(v < uw \), so \(uw \) must be placed somewhere above its endpoints in any linear extension. On the other hand, for the sake of reversing critical pairs, we want edges as low as possible, since edges are only in critical pairs of the form (vertex,edge), and this critical pair is only reversed if the edge is below the vertex in the linear extension. So the best place we can put \(uw \) is right above the higher of \(u \) and \(v \) in our linear extension. If several edges are placed directly above the same vertex, their relative order does not affect the reversal of any critical pairs. Thus, once we have ordered \(V(G) \) in a linear extension, we know where we must place the edges if we wish to make this linear extension maximal. Further, the critical pair \((u, vw) \) gets reversed exactly when \(u \) comes above both \(v \) and \(w \) in the ordering of \(V(G) \).

Henceforth, we will describe (maximal) linear extensions in terms of permutations of \(V(G) \).

Schnyder [12] showed that \(\dim(P(G)) \leq 3 \) iff \(G \) is planar. For fractional dimension, on the other hand, Brightwell and Scheinerman [2] proved that \(\dim_f(P(G)) \leq 3 \) for any finite graph \(G \), and that equality holds iff \(G \) contains a triangle. Taking trees to be the
most obvious examples of triangle-free graphs, they went on to show that \(\dim_f(P(T)) \leq 1 + \phi \approx 2.61803 \) for any tree \(T \), where \(\phi = \frac{1}{2}(1 + \sqrt{5}) \) is the golden mean, and conjectured that this upper bound was tight. In the remainder of this chapter, we will show that the correct value of this upper bound is (approximately) 2.44504, and present other specific results pertaining to stars, binary trees, and infinite trees.

4.3 Posets of Trees and \(\dim_f \) for Posets of Stars

We shall consider only complete, rooted \(q \)-ary trees, that is, trees where every non-leaf vertex has \(q \) children, every non-root vertex has one parent, and all leaves are at the same level of the tree. Any tree may be considered rooted, and if \(T \) has maximum vertex degree \(\Delta \), then it is a subtree of some complete, rooted \((\Delta - 1) \)-ary tree. By Lemma 4.1, this is sufficient to establish an upper bound on \(\dim_f(P(T)) \). Henceforth, \(n \) will denote the depth of any tree under consideration.

We warm up with the relatively simple calculation of a tight upper bound for \(\dim_f \) of the posets of finite stars. This result was noted, but not proved, by Brightwell and Scheinerman [2].

Theorem 4.4 \(\lim_{q \to \infty} \dim_f(P(S_q)) = 1 + \sqrt{2} \)

Proof. Since we can describe our linear extensions of \(P(S_q) \) with permutations of \(V(S_q) \), there is, up to isomorphism, only one decisions to make in constructing them: how far down to put the root. Let us put a fraction \(p = 2 - \sqrt{2} \) of the leaves above the root, and let \(L_p \) be the random variable which chooses a linear extension uniformly at random from the set of all such linear extensions. In the star with root \(r \), there are only two types of critical
pairs: \((r, u)\) and \((u, rv)\).

\[
\Pr\{L_p \text{ reverses } (r, u)\} = \Pr\{r > u \text{ in } L_p\} = 1 - p = \sqrt{2} - 1,
\]

\[
\Pr\{L_p \text{ reverses } (u, rv)\} = \Pr\{u > r, v \text{ in } L_p\}
\approx p((1 - p) + p/2) = p - p^2/2 = \sqrt{2} - 1.
\]

Note that the quantity \(p((1 - p) + p/2)\) assumes that each leaf is being put over the root independently with probability \(p\). Although this is never the case with finite stars, this approximation becomes arbitrarily close to correct as \(n \rightarrow \infty\), and so will serve in our limit calculations.

Now, if we distribute total weight \(1/p\) evenly among all linear extensions in the sample space of \(L_p\), then the total weight on any critical pair is

\[
(\text{total weight on } L_p) \cdot (\text{fraction of } L_p \text{ containing the critical pair}) = (1/p) \cdot (p) = 1.
\]

Thus this weighting creates a valid fractional realizer of weight \(1/p = 1 + \sqrt{2}\). Of course, we can never actually take an exact portion \(2 - \sqrt{2}\) of leaves, but we may get arbitrarily close to this as \(q\) gets large, so we have our desired upper bound on the limit.

For a lower bound, let \(L_p\) be as above, but let \(p\) take on any value in \([0,1]\). Now, the probability that a given critical pair will be reversed by \(L_p\) is the same as the fraction of that type of critical pair that are reversed by any one member of \(L_p\)'s sample space. So if we distribute total weight \(\alpha\) evenly among all \((r, u)\) critical pairs, and \(\beta\) among all \((u, rv)\) critical pairs, then the total weight put on any linear extension from \(L_p\) is

\[
w_{\alpha, \beta}(p) = \alpha(1 - p) + \beta(p - p^2/2), \quad \text{and}
\]
\[\frac{d}{dp} w_{\alpha, \beta}(p) = \beta(1 - p) - \alpha = 0 \quad \text{at} \quad p = 1 - \frac{\alpha}{\beta} \]
\[\frac{d^2}{dp^2} w_{\alpha, \beta}(p) = -\beta \]

So \(w_{\alpha, \beta}(p) \) attains its maximum value at \(p = 1 - \alpha/\beta \). As in our upper bound calculations, the quantity \((p - p^2/2)\) is only actually correct if we are placing each leaf above the root independently with probability \(p \), but again, it becomes arbitrarily close to correct in the limit, which is all we are presently concerned with.

If we set \(\alpha = \sqrt{2}/2 \) and \(\beta = (\sqrt{2} + 1)/\sqrt{2} \), then \(w \) attains its maximum value for \(p = 2 - \sqrt{2} \), and
\[w_{\alpha, \beta}(2 - \sqrt{2}) = \frac{\sqrt{2}}{2}(\sqrt{2} - 1) + \frac{\sqrt{2} + 1}{\sqrt{2}}(\sqrt{2} - 1) = 1 \]

So our weighting of critical pairs never puts weight more than 1 on any linear extension, and so is a valid fractional packing. The value of this fractional packing is \(\alpha + \beta = 1 + \sqrt{2} \), giving the desired lower bound. Note that it is the inaccuracy in the \((p - p^2/2)\) value which keeps this from actually being a valid fractional packing in any finite case. It is, however, sufficient in showing that, as \(q \to \infty \), we can create fractional packings arbitrarily close to this value, which is all we need to establish our limit. \(\square \)

Note that, since \(S_{q-1} \subset S_q \), Lemma 4.1 tells us that \(\dim_f(P(S_q)) \) is an increasing function of \(q \), and so actually \textit{increases} to the limiting value of \(1 + \sqrt{2} \).

We now move on to trees of arbitrary depth. Henceforth, for the sake of our optimal fractional realizers and packings, it suffices to consider very specific classes of linear extensions and critical pairs. A linear extension of a poset of a tree is \textit{contiguous} if, for
any vertex x with children y_1, \ldots, y_q, all the vertices of any subtree rooted at some y_i appear consecutively in the linear extension. That is, if T_i is the subtree rooted at y_i, then a contiguous linear extension has

$$\ldots, V(T_1), V(T_2), \ldots, V(T_k), x, V(T_{k+1}), \ldots, V(T_q), \ldots$$

appearing consecutively in it, for some ordering of x’s children and some $k \in \{0, 1, \ldots, q\}$. Any vertex not in the subtree rooted at x comes before or after these vertices in the linear extension, and the vertices of each $V(T_i)$ appear within this collection in a similarly contiguous fashion. See Figure 7(b).

A more constructive description comes from building the tree recursively. If we build the tree by recursively replacing each leaf by a q-star with that leaf as the center, then we similarly update the linear extension by replacing the leaf with the entire star contiguous within the linear extension.

Since we are talking about complete q-ary trees, we may now fully describe contiguous linear extensions, up to isomorphism, by specifying what fraction of each vertex’s children appear above it in the linear extension. We shall be more precise about this below.

In the case of critical pairs, we don’t limit our consideration to a select few, as we did with linear extensions, but instead observe that every critical pair can be put into one of just a few categories. In any contiguous linear extension, this category fully describes a critical pair’s behavior. Of course, all (branch, leaf) critical pairs are identical up to isomorphism. The (vertex, edge) critical pairs may be described by where the vertex falls in the rooted tree relative to the edge; specifically, what is the lowest common ancestor of the vertex and the lower endpoint of the edge. For the critical pair (u, vw), where v is above w in the tree,
we have four choices for the lowest common ancestor of u and w:

Figure 7: (a) The top three levels of a complete ternary tree. (b) A contiguous linear extension thereof, where each T_{ij} represent the entire subtree rooted at a level Y vertex. Note that the subtree rooted at each x_i appears contiguously within this linear extension.
We may now fully characterize the conditions necessary for each such critical pair type to be reversed in a contiguous linear extension (putting vertex > edge or branch > leaf; see Figure 8):

(i) if \(y_v \) is the child of \(u \) whose subtree contains \(vw \) (possibly \(y_v = v \)), we must have \(u > y_v \) (the entire subtree rooted at \(y_v \), including \(vw \), is then beneath \(u \))
(ii) if y_u is the child of w whose subtree contains u (possibly $y_u = u$), we must have $w > v$ (to get w’s subtree, including u, above v) and $y_u > w$ (to get y_u’s subtree, including u, above w)

(iii) if y_u is the child of v whose subtree contains u (possibly $y_u = u$), we need $y_u > v$ and either $v > w$ or $y_u > w > v$.

(iv) if x is u and v’s lowest common ancestor, and y_u and y_v are x’s children whose subtrees contain u and v, respectively (possibly $y_u = u$ or $y_v = v$), we must have $y_u > y_v$ (x’s relative position is irrelevant).

(v) we must simply have branch>leaf.

If we chose a contiguous linear extension “at random”, then the probability of any of the above events can be described in terms of the fraction of vertices’ children which appear above them.

We now present two results. Because the proofs of each are similar, we state the results first, then dedicate separate sections to all upper bound and tightness calculations.

Theorem 4.5 For any (finite or infinite) binary tree T (i.e. tree with maximum degree 3), $\dim_f(P(T)) \leq \frac{7}{3}$, and this bound is best possible.

Theorem 4.6 For any (finite or infinite) tree T of bounded degree, $\dim_f(P(T)) \leq z_0 \approx 2.44504$, where z_0 is a root of $z^3 - 7z^2 + 14z - 7 = 0$. This bound is, at least to within 2000 decimal places of accuracy, best possible.
4.4 Upper Bound Calculations

As mentioned earlier, we may fully describe contiguous linear extensions simply by stating what fraction of a vertex’s children are above it in the linear extension. The simplest way to do this is to let this fraction be the same for all vertices. In particular, for a q-ary tree, we may define a contiguous linear extension L_i, up to isomorphism, by allowing every vertex to have exactly i of its children above it in L_i, for any $i \in \{0, \ldots, q\}$. We may also treat L_i as a random variable: we choose a linear extension uniformly at random from the set of all such L_i’s. Note that the arrangement of a vertex’s children around it is independent of that for any other vertex. Then the probability that any vertex is above its parent in L_i is $\frac{i}{q}$. Further, we can calculate the exact probability that any of our five types of critical pairs is reversed in L_i. Again, for the critical pair (u, v), we have:

(i) $\Pr\{u > y_v\} = \frac{q-i}{q}$

(ii) $\Pr\{y_u > w > v\} = \frac{i^2}{q^2}$

(iii) $\Pr\{y_u > v \text{ and } y_u > w\} = \frac{\sum_{k=1}^{i}(q-k)}{q(q-1)} = \frac{i(2q-i-1)}{2q(q-1)}$

(iv) $\Pr\{y_u > y_v\} = \frac{1}{2}$

(v) $\Pr\{\text{branch>leaf}\} = \frac{q-i}{q}$

The optimal usage of such L_i’s in constructing fractional realizers requires a mix of different i values. If we use L_i a fraction a_i of the time, where $\sum_i a_i = 1$, then the above becomes

(i) $\Pr\{u > y_v\} = \sum_{i=0}^{q} \left(\frac{q-i}{q}\right) a_i$

(ii) $\Pr\{y_u > w > v\} = \sum_{i=0}^{q} \left(\frac{i^2}{q^2}\right) a_i$
(iii) $\Pr\{y_u > v \text{ and } y_v > w\} = \sum_{i=0}^{q} \left(\frac{i(2q-i+1)}{2q(q-1)} \right) a_i$

(iv) $\Pr\{y_u > y_v\} = \frac{1}{2}$

(v) $\Pr\{\text{branch > leaf}\} = \sum_{i=0}^{q} \left(\frac{q-i}{q} \right) a_i$

Suppose that the smallest value above is p; that is, every critical pair gets probability weight at least p. Then if we actually put weight a_i/p on L_i for each i, the total weight used is $1/p$. Further, each of the values in (i)-(v) above gets multiplied by $1/p$, and so is at least 1. We then have a fractional realizer of weight $1/p$, and so we wish to maximize p to get the best upper bound possible. Note that (i) and (v) are identical, and since we will not be able to get all of (i)(ii)(iii) simultaneously above $\frac{1}{2}$, (iv) will never be our smallest value.

Trying to get the minimum of (i)-(iii) as large as possible is a balancing act, where making one larger makes another smaller. So the best we can do is when they’re all equal. So we may write each of (i)-(iii) above as $\sum_i c_i a_i = p$ for the appropriate values of the c_i’s. Along with $\sum_i a_i = 1$, we have a linear system with 4 equations and $q + 1$ unknowns. Therefore, so long as the system is consistent, a solution will exist with only 4 non-zero variables. We clearly need p to be one of these; let the others be a_i, a_j, and a_k. Since $a_k = 1 - a_i - a_j$, we can make this substitution in (i)-(iii) and remove the last equation. Rearranging, (i)-(iii) take the form

$$(c_i - c_k)a_i + (c_j - c_k)a_j - p = -c_k.$$

Putting this in matrix form, substituting in the appropriate c values for (i)-(iii) and

\[25\] More specifically, if we distribute total weight a_i/p evenly among all linear extensions from L_i’s sample space

\[26\] This claim is made without proof; such a proof adds no real content, as what follows would be valid even if it were false. We still establish a valid upper bound.
collecting these in a single matrix equation, we get

\[
\begin{bmatrix}
\frac{k-i}{q} & \frac{k-j}{q} & -1 \\
\frac{i^2-k^2}{q^2} & \frac{j^2-k^2}{q^2} & -1 \\
\frac{2q(i-k)+i(i+1)+k(k+1)}{2q(q-1)} & \frac{2q(j-k)+j(j+1)+k(k+1)}{2q(q-1)} & -1
\end{bmatrix}
\begin{bmatrix}
a_i \\
a_j \\
p
\end{bmatrix}
=
\begin{bmatrix}
-\frac{q-k}{q} \\
-\frac{k^2}{q^2} \\
-\frac{k(2q-k-1)}{2q(q-1)}
\end{bmatrix}
\]

If we represent the above as \(Ax = b \), we may find \(x \) explicitly as \(A^{-1}b \), since \(A^{-1} = \frac{1}{\det(A)} \text{adj}(A) \) may be calculated symbolically. Interestingly, regardless of our choice of \((i, j, k)\), \(p \) always solves as \(\frac{2q-1}{5q-3} \), giving a fractional realizer weight of \(\frac{5q-3}{2q-1} \). We need only check that we can find some \((i, j, k)\) where \(a_i, a_j, a_k \geq 0 \).\(^{27}\) It turns out that a number of choices of \((i, j, k)\) work. In particular, \((i, j, k) = (0, \left\lceil q/2 \right\rceil, q)\) always works. In the case of \(q \) even, for example, we get

\[
(a_i, a_j, a_k) = \left(\frac{1}{5q-3}, \frac{4q-4}{5q-3}, \frac{q}{5q-3} \right)
\]

Multiplying these values by \(1/p = \frac{5q-3}{2q-1} \) gives the actual amount of weight we wish to assign to each type of linear extension. This assignment constitutes a valid fractional realizer of weight \(\frac{5q-3}{2q-1} \), which proves \(\dim_f(P(T)) \leq \frac{5q-3}{2q-1} \) for any complete, finite \(q \)-ary tree \(T \), and thus for \textit{any} finite tree with maximum degree \(q + 1 \).

In a finite tree, there are only a finite number of linear extensions with parameter \(i \), and so it makes sense to take the weight \(a_i/p \) and divide it evenly among all linear extensions in the class \(L_i \). In the case of infinite trees, however, this clearly does not work. We may, however, through a clever choice of a finite collection of members of \(L_i \), create the desired

\(^{27}\)So that all linear extensions receive non-negative weights, and we actually do have a valid fractional realizer.
randomness and independence in putting vertices above or below their parents, even in an infinite tree. Let Π be the set of permutations on $[q]$. For $\pi, \sigma \in \Pi$, define the contiguous linear extension $L_i(\pi, \sigma)$ as follows. If vertex v is on an odd level of T, arrange its children in $L_i(\pi, \sigma)$ according to π; if v is on an even level, arrange its children according to σ; in either case, put v below exactly i of its children. We now chose the random variable L_i uniformly from $\{L_i(\pi, \sigma) : (\pi, \sigma) \in \Pi \times \Pi\}$. Now not only are all possible arrangements of a vertex’s children equally likely, but they are independent of the arrangement of that vertex’s siblings. Note that the reversal of any critical pair is determined by the ordering of vertices from (at most) three consecutive levels of T. For example, whether or not a type(ii) critical pair (u, vw) is reversed is fully determined by the location of v, w and y_u within $L_i(\pi, \sigma)$, and all these vertices lie within three consecutive levels of T. Since the arrangement of the higher of these levels is independent of the arrangements within the lower level, all our previous calculations are valid for this construction. Thus our result also applies to infinite q-ary trees.

We notice that, as $q \to \infty$, $1/p = \frac{2q-3}{2q-1}$ approaches 2.5, which is not the best possible upper bound for posets of trees. However, this does provide the best known upper bound for instances of q where this value is less than then general bound of 2.44504 (specifically, $q = 2, 3, 4, 5$). In the case of binary trees ($q = 2$), this bound is best possible.

Proof of Theorem 4.5 (first part). Setting $q = 2$ in the above informs us that, for all (finite or infinite) binary trees T, $\dim_f(P(T)) \leq \frac{7}{3}$. □

The proof that this bound is best possible appears in the following section.

Since these bounds are not, in general, best possible, how may we improve on them?

28Note that $q = 5$ gives $1/p = 2.4$ but $q = 6$ gives $1/p = 2.45$.
So far, we have taken the probability that a vertex appears below one of its children to be the same for all vertices. If instead we make this probability conditional on whether or not a vertex is itself above or below its parent, we may improve our limiting bound.

Proof of Theorem 4.6 (first part). Given the poset of a complete \(q \)-ary tree, we wish to define a single class of contiguous linear extensions, all of which are equivalent. We let \(L \) be a random variable which chooses one such linear extension uniformly at random. We now build our contiguous linear extensions “top down”, i.e. recursively, starting at the top. For any vertex \(y \) with parent \(x \) and child \(z \), let

\[
\begin{align*}
a &= \Pr\{z > y \text{ in } L\} \\
b &= \Pr\{z > y \text{ in } L \mid y > x \text{ in } L\} \\
c &= \Pr\{z > y \text{ in } L \mid y < x \text{ in } L\}
\end{align*}
\]

In order to make sure that these three are consistent, we will require that

\[
\Pr\{z > y\} = \Pr\{z > y \mid y > x\} \Pr\{y > x\} + \Pr\{z > y \mid y < x\} \Pr\{y < x\}
\]

i.e. that \(a = ab + (1 - a)c \). Also, while every other vertex will have either a fraction \(b \) or \(c \) of its children above it, the root will actually have a fraction \(a \) of its children above it. Now, as before, we may calculate the probability that each type of critical pair gets reversed in \(L \). For the critical pair \((u, v, w)\), we have:

(i) \(\Pr\{u > y_v\} = 1 - a \), or equivalently, \(a(1 - b) + (1 - a)(1 - c) \)

(ii) \(\Pr\{y_u > w > v\} = ab \)
(iii) \(\Pr\{y_u > v \text{ and } y_u > w \} = a(b - b^2/2) + (1-a)(c - c^2/2) \), or just \(a - a^2/2 \) if \(v \) is the root

(iv) \(\Pr\{y_u > y_v\} = \frac{1}{2} \)

(v) \(\Pr\{\text{branch}>\text{leaf}\} = \text{same as (i)} \)

As before, we wish to maximize the minimum of these quantities (which we call \(p \)), and we do so by setting (i)=(ii)=(iii). Using both quantities in (i), we get three equations, which solve as:

\[
\begin{align*}
b &= \frac{1-a}{a} \\
c &= \frac{2a-1}{1-a} \\
0 &= 7a^3 - 7a^2 + 1
\end{align*}
\]

the last of which has two roots in \([0, 1]\), but the larger gives \(c \approx 1.8019 \), which is not in \([0, 1]\). We are left with the following solution:

\[
a \approx .59101, \quad b \approx .69202, \quad c \approx .44504, \quad p \approx .40899, \quad 1/p \approx 2.44504.
\]

And, as desired, this solution satisfies our requirement that \(a = ab + (1-a)c \). As before, we distribute total weight \(1/p \) evenly over the sample space of \(L \), and since every critical pair is in a fraction at least \(p \) of these, each critical pair receives total weight at least 1. We thus have a valid fractional realizer of weight \(1/p \). This is exactly the value we want for \(z_0 \). Noting that \(z_0 = 1/p = 1/(1-a) \), we have \(a = (z_0 - 1)/z_0 \), and substituting this into \(0 = 7a^3 - 7a^2 + 1 \) gives \(z_0^3 - 7z_0^2 + 14z_0 - 7 = 0 \). So \(\dim_f(P(T)) \leq z_0 \) for any tree in question.

Of course, \(a, b \) and \(c \) are irrational, so we can never put these exact fractions of children
over their parents. However, as \(q \) gets large, we can get arbitrarily close to these values. Further, since \(T_1 \subset T_2 \) implies \(\dim_f(P(T_1)) \leq \dim_f(P(T_2)) \), \(\dim_f \) has to be a non-decreasing function of \(q \), and so this upper bound applies to all complete rooted trees. We can use the same technique previously described to reduce the size of \(L \)'s sample space to \((q!)^2 \) for infinite trees, so long as \(q \) is finite. Thus we have our upper bound on all (finite or infinite) complete \(q \)-ary trees for any finite \(q \), and thus the bound also applies to all trees of bounded degree. \(\Box \)

Again, the proof that this bound is best possible appears in the following section.

4.5 The Tightness of Upper Bounds

We now establish that the given upper bounds are best possible. To this end, we consider the dual invariant, fractional packing number, since the value of any valid fractional packing serves as a lower bound on fractional dimension. We proceed by assigning weights to all critical pairs, and then establishing that we have a fractional packing by means of a dynamic program. We are still working with complete \(q \)-ary trees (\(q \) fixed), and we wish to construct the depth \(n \) tree \(T_n \) recursively as follows: \(T_2 \) is just the \(q \)-star (with its center the root); to make \(T_{n+1} \), we take \(q \) copies of \(T_n \), create a new root, and draw edges between the new root and each of the old roots. We only assign weight to “close-as-possible” critical pairs; that is, for the (vertex, edge) critical pairs of any particular type, we require the vertex to be as close as possible to the edge. In terms of our previous language, we only use critical pairs where \(y_u = u \) or \(y_v = v \). So type (i) and (ii) critical pairs are contained within three consecutive levels of the tree, and type (iii) are within two. “Close-as-possible” is redundant for type (v), and we never assign weight to type (iv). At each iteration, the “new” critical pairs are
exactly the ones that use the new root (either as a vertex or edge endpoint). All other critical pairs are (copies of) ones found in previous iterations. For convenience, we refer to the top three levels of the tree as r (the root), X and Y, in downwards order (see Figure 7(a)), and thus we only directly discuss critical pairs involving vertices in these levels. For each type of critical pair except (iv), we associate a fixed weight:

(i): γ (ii): δ (iii): β (v): α

This weight is distributed evenly among all new critical pairs of the indicated type. So, for example, since there are $q(q - 1)$ new type (iii) critical pairs at each iteration, we assign to each such new critical pair a weight of $\beta/(q(q - 1))$. When we iterate, all old weights are divided by q, since we have made q copies of all critical pairs. This way, while the weight on any particular (copy of an) old critical pair is divided by q, the total weight on all old critical pairs remains unchanged. Specifically, if we define

$$w_n = \text{total weight on all critical pairs in the tree } T_n,$$

we may recursively calculate29 $w_n = w_{n-1} + \beta + \delta + \gamma$. Of course, at any step, we would have to scale down all weights so that no linear extension received total weight more than 1, but for now we address this issue only indirectly. At each stage we wish to know, “What is the most weight that this critical pair weighting puts on any linear extension of $P(T_n)$?”

We condition this answer on the number of sub-roots (children of the root) that appear above the root in the linear extension in question, and therein lies our dynamic program. We define

29Because they involve leaves, there are never any new type (v) critical pairs after T_2, so we do not add α.
\(f_n(i) = \) maximum possible weight on any linear extension of \(P(T_n) \) that has \(i \) subroots above the main root.

Looking at the different types of critical pairs (excepting type (iv), which always get weight 0), we see that only type (iii) uses vertices from more than one \(T_{n-1} \) subtree. So within a linear extension, once we have ordered the root and its children, we only care about the ordering of the other vertices relative to other vertices in their own \(T_{n-1} \) subtree; how vertices from different subtrees are mixed is immaterial. Further, for any new type (i) or (ii) critical pairs, we need only consider a single \(T_{n-1} \) subtree, and whether its subroot is placed above or below the main root. We define

\[g^x_n = \text{maximum possible total weight that can be put on critical pairs in any } (T_{n-1} + \text{root}) \]

by a linear extension where the subtree’s root is above the main root.

\[g^y_n = \text{maximum possible total weight that can be put on critical pairs in any } (T_{n-1} + \text{root}) \]

by a linear extension where the subtree’s root is below the main root.

These values are, roughly, \(f_{n-1}(i)/q \) plus weight added by new type (i) and (ii) critical pairs. Specifically, for each such subtree, we wish to use the \(i \) which gives the largest possible weight. For a linear extension of (a copy of) \(T_{n-1} \), if \(i \) of it’s subroots (in \(Y \)) are above its main root (in \(X \)), then we can put at most \(f_{n-1}(i)/q \) total weight on it. If its root is above the root \(r \) of \(T_n \), then no new type (i) critical pairs may be reversed (reversing these requires \(r \) to be placed above the subtree’s root). Further, a type (ii) critical pair is reversed only if its \(Y \) vertex is above both its \(X \) parent and \(r \). We have specified that \(i \) such \(Y \) vertices are above their parent (in this copy of \(T_{n-1} \)), which is in turn above \(r \), so
exactly i type (ii) critical pairs (from a total of q) are reversed by this linear extension of the $T_{n-1} + r$ subtree. Since each of the q^2 new type (ii) critical pairs gets weight δ/q^2, we have

$$g_n^r = \max_{i=0,\ldots,q} \left\{ \frac{1}{q} f_{n-1}(i) + \frac{i}{q^2} \right\}$$

Applying a similar analysis to the case where the root of T_{n-1} (in X) is below r, we see that $(q - i)$ of the Y vertices go below their parent, so for each of these, the corresponding type (i) critical pair is reversed. For the i vertices in Y that go above their parent in X, we may freely put them between r and their parent, or above r. The former reverses a type (i) critical pair, while the latter reverses a type (ii). Since these are the only critical pairs in $T_{n-1} + r$ that are affected by the positioning of r relative to $V(T_{n-1})$, we make this decision based on which of δ or γ is larger. Then we have

$$g_n^r = \max_{i=0,\ldots,q} \left\{ \frac{1}{q} f_{n-1}(i) + \frac{q - i}{q^2} \gamma + \frac{i}{q^2} \cdot \max\{\delta, \gamma\} \right\}$$

We may now compute f_n by considering which type (iii) critical pairs are reversed. For each X vertex u above the root, every type (iii) critical pair of the form (u, rw) in which u is above w is reversed. There are $\sum_{k=1}^{q} (q - k) = (iq - i(i + 1)/2)$ of these reversed (from a total of $q(q - 1)$ type (iii)'s), and so

$$f_n(i) = \left(\frac{iq - i(i + 1)/2}{q(q - 1)} \right) \beta + i \cdot g_n^r + (q - i) \cdot g_n^r$$

Finally, we have

$$f_2(i) = \left(\frac{iq - i(i + 1)/2}{q(q - 1)} \right) \beta + \frac{q - i}{q} \alpha$$

$$w_2 = \beta + \alpha$$

$$w_n = w_{n-1} + \beta + \delta + \gamma$$
and so we have established the mechanics of our dynamic program. For convenience, define \(f_n = \max_{i=0, \ldots, q} f_n(i) \). Now, after the \(n \)th iteration, when we have used the indicated weighting scheme and determined that no linear extension of \(P(T_n) \) can have total weight more than \(f_n \), if we divide all the weights of all the critical pairs by \(f_n \), then we have a valid fractional packing of \(P(T_n) \) with value \(w_n/f_n \). This value is a lower bound on \(\text{dim}_f(P(T_n)) \). Further, it is a lower bound for any non-negative values of \(\alpha, \beta, \delta \) and \(\gamma \), so the best lower bound comes with the best selection of these values. With this in mind, we are ready to establish a lower bound for \(\text{dim}_f \) of all posets of binary trees.

Proof of Theorem 4.5 (second half). We have \(q = 2 \), and all notation as above. Set

\[
\alpha = 2, \quad \beta = 2, \quad \delta = 2, \quad \gamma = 3
\]

Since \(\gamma > \delta \), we have

\[
f_2(0) = \alpha = 2, \quad f_2(1) = \beta/2 + \alpha/2 = 2, \quad f_2(2) = \beta/2 = 1
\]

\[
g_n^\sigma = \max_{i=0, 1, 2} \left\{ \frac{1}{2} f_{n-1}(i) + \frac{i}{2} \right\}
\]

\[
g_n^\tau = \max_{i=0, 1, 2} \left\{ \frac{1}{2} f_{n-1}(i) + \frac{3}{2} \right\}
\]

\[
f_n(0) = 2g_n^\tau, \quad f_n(1) = 1 + g_n^\tau + g_n^\chi, \quad f_n(2) = 1 + 2g_n^\tau
\]

\[
w_2 = 4, \quad w_n = w_{n-1} + 7
\]

Notice that, if \(f_{n-1}(0) = f_{n-1}(1) = f_{n-1}(2) + 1 \), then \(f_n(1) - f_n(2) = g_n^\sigma - g_n^\tau = 1 \) and \(f_n(0) - f_n(1) = g_n^\tau - g_n^\chi - 1 = 0 \). Since these relations hold for the \(n = 2 \) base case, they must hold for all \(n \) inductively. So \(f_n = f_n(0) = 2g_n^\tau = f_{n-1}(0) + 3 = f_{n-1} + 3 \) for all \(n \geq 3 \). So we have
\[w_n = w_2 + 7(n - 2) = 7n - 10 \text{ and } f_n = f_2 + 3(n - 2) = 3n - 4 \]

Since \(w_n / f_n \) serves as a lower bound on \(\dim_f \), we have that \(\dim_f(P(T_n)) \geq \frac{7n-10}{3n-4} \) for a complete \(n \)-level binary tree \(T_n \), and so the previously derived upper bound of \(7/3 \) is best possible. □

Proof of Theorem 4.6 (2nd half). As with the upper bound, in order to establish a lower bound for *all* trees, we want \(q \to \infty \). Notice that, although the argument \(i \) of \(f_n(i) \) is a *number* of vertices, in the formulas it generally appears as part of a *fraction* of critical pairs. So let us reformulate \(f_n(i) \) slightly, so that now \(i \) represents the *fraction* of the root’s children which appear above it in a linear extension. Now, the domain of \(f_n(i) \) is \(\{0, \frac{1}{q}, \frac{2}{q}, \ldots, \frac{2}{q} \} \), so as \(q \to \infty \), we may choose arguments arbitrarily close to any real value in \([0, 1]\). Thus we may approximate this situation simply by taking \(f_n(i) \) to be a function on the real interval \([0, 1]\). We next reformulate our entire dynamic program in this continuous form, which will demonstrate the limiting behavior of our previous system as \(q \to \infty \).

We assume that we may choose *any* real fraction \(i \) of a vertex’s children to go above it in a linear extension. We still talk about \(T_n \) as if \(q \) were finite, for if we actually had \(q = \infty \), it would make no sense to talk about a specific fraction of an infinite number of children. We still iterate our tree and functions in the same manner, and still distribute weights \(\alpha, \beta, \delta \) and \(\gamma \) evenly on the various types of “new” critical pairs. \(f_n(i) \) is still the most weight put on any linear extension of \(P(T_n) \) with parameter \(i \) by our weighting. However, we must slightly reformulate the meanings of \(g_n^\alpha \) and \(g_n^\gamma \):

\[g_n^\alpha = \text{maximum possible total weight that can be put on all critical pairs in all } (T_{n-1} + \]
root)’s by a linear extension where every subtree’s root is above the main root.

\[g^r_n = \text{maximum possible total weight that can be put on all critical pairs in all } (T_{n-1} + \text{root})’s \text{ by a linear extension where every subtree’s root is below the main root.} \]

These values still represent weight that lies only within \(T_{n-1} + \text{root} \) subtrees, but now each represents the weight on all such subtrees, were the root to fall as indicated for each of them. But since the weight on any collection of such subtrees is independent of the weight on any other disjoint collection, if exactly a fraction \(i \) of \(r’ \)’s children come above it, then exactly a fraction \(i \) of the total weight represented by \(g^r_n \) will be on this linear extension (as well as \(1 - i \) of the total weight of \(g^r_n \)). We may now formulate our expressions much the same as before, though it is much easier to represent the fraction of a particular type of critical pair which is being reversed\(^{30}\):

\[
\begin{align*}
g^x_n &= \max_{i \in [0,1]} \{ f_{n-1}(i) + i\delta \} \\
g^r_n &= \max_{i \in [0,1]} \{ f_{n-1}(i) + (1 - i)\gamma + i \cdot \max\{\delta, \gamma\} \} \\
f_2(i) &= (i - i^2/2)\beta + (1 - i)\alpha \\
f_n(i) &= (i - i^2/2)\beta + ig^x_n + (1 - i)g^r_n \\
w_2 &= \beta + \alpha \\
w_n &= w_{n-1} + \beta + \delta + \gamma
\end{align*}
\]

We henceforth take \(\gamma \geq \delta \), so that \(g^r_n = \gamma + \max_i \{ f_{n-1}(i) \} \). By choosing \(\alpha \) carefully, we can force \(f_n(i) \) to behave nicely.

\(^{30}\)The \(i - i^2/2 \) of the \(f \) formulations is exactly the same as the expression \(p - p^2/2 \) found in the proof for stars. It is the fraction of new type (iii) critical pairs that are reversed when a fraction \(i \) of the subroots are placed above the main root.
Lemma 4.7 If we choose \(\alpha = \frac{\beta \gamma - \beta \delta + \delta^2 / 2}{\beta - \delta} \), then \(f_n(i) = f_{n-1}(i) + c \) for all \(i \in [0, 1] \), where \(c = g_3^r - \alpha \).

Proof. Let \(j = \text{argmax}(g_3^r) \) and \(k = \text{argmax}(g_3^r) \). Substituting \(f_2 \) and checking derivatives gives

\[
g_3^r = \max_{i \in [0, 1]} \left\{ -i^2 \beta / 2 + i(\beta - \alpha + \delta) + \alpha \right\}, \quad j = \frac{\beta - \alpha + \delta}{\beta} \]

\[
g_3^r = \frac{(\beta - \alpha + \delta)^2}{2 \beta} + \alpha \]

\[
g_3^r = \gamma + \max_{i \in [0, 1]} \left\{ -i^2 \beta / 2 + i(\beta - \alpha) + \alpha \right\}, \quad k = \frac{\beta - \alpha}{\beta} \]

\[
g_3^r = \frac{(\beta - \alpha)^2}{2 \beta} + \alpha + \gamma \]

Then

\[
f_3(i) = (i - i^2 / 2) \beta + ig_3^r + (1 - i)g_3^r = f_2(i) + i(\alpha + g_3^r - g_3^r) + (g_3^r - \alpha) .
\]

Since \(\alpha \) was specifically chosen to solve

\[
\alpha = g_3^r - g_3^r = \gamma - \frac{2(\beta - \alpha)\delta + \delta^2}{2 \beta},
\]

and with \(c = g_3^r - \alpha \), we have our result for the base case of \(n = 3 \). The general case follows by induction: if we assume that \(f_{n-1}(i) = f_2(i) + (n - 3)c \), then clearly \(g_n^r = g_3^r + (n - 3)c \) and \(g_n^r = g_3^r + (n - 3)c \), and then

\[
f_n(i) = (i - i^2 / 2) \beta + ig_n^r + (1 - i)g_n^r
\]

\[
= f_2(i) + i(\alpha + g_3^r - g_3^r) + (n - 3)c + (g_3^r - \alpha)
\]

\[
= f_2(i) + (n - 2)c ,
\]
which proves our lemma. □

As before, $\dim_f(P(T_n))$ is bounded below by $w_n/\max_i\{f_n(i)\}$. (More precisely, the bound will approach this value as $q \to \infty$.) But $w_n = w_2 + (\beta + \delta + \gamma)n$ and $f_n(i) = f_2(i) + cn$. So as $n \to \infty$, the limiting value of this lower bound is just $(\beta + \delta + \gamma)/c$. Our goal now becomes to choose the values of β, δ and γ which maximize this quantity. More specifically, we must solve the following non-linear optimization problem:

$$\max_{\alpha,\beta,\delta,\gamma} \frac{\beta + \delta + \gamma}{c} \quad \text{s.t.} \quad c = \frac{(\beta - \alpha)^2}{2\beta} + \gamma, \quad \alpha = \frac{\beta\gamma - \beta\delta + \delta^2/2}{\beta - \delta}, \quad \gamma \geq \delta.$$

Although we cannot hope for a clean analytic solution, we may reduce the problem somewhat. Notice that our objective function is not affected if we proportionally scale each of β, δ and γ, since c and α would also be scaled by the same proportion. Thus we may arbitrarily choose $\beta = 1$, giving

$$\alpha = \frac{\gamma - \delta + \delta^2/2}{1 - \delta}$$

$$c = g_3 - \alpha = (1 - \alpha)^2/2 + \gamma = \frac{1}{2} \left(\frac{1 - \gamma - \delta^2/2}{1 - \delta} \right)^2 + \gamma.$$

Substituting these into our objective function gives

$$\max_{0 \leq \delta \leq \gamma} \frac{2(1 - \delta)^2(1 + \delta + \gamma)}{\delta^4/4 + \delta^2\gamma + \delta^2 + \gamma^2 - 4\delta\gamma + 1}$$

The value of this optimization problem will be the best possible value of $w_n/\max_i\{f_n(i)\}$, and will thus be a lower bound on $\dim_f(P(T_n))$ as $n, q \to \infty$.
At this time, we are still attempting an analytic proof that the solution to this optimization problem is the same as the upper bound z_0. We have, however, used Mathematica to determine that the two quantities are equal out to 2000 decimal places of accuracy, so there can be little doubt that they are, in fact, the same number. □

4.6 Infinite Trees

We have already established that 2.44504 is a tight upper bound on the fractional dimension of posets of infinite trees so long as their maximum degree is bounded. What if an infinite tree is of unbounded maximum degree? The answer to this mystery is as close as the stars.

The following is a Corollary of a result that was discovered by Tom Trotter and John Moore, but never published.

Lemma 4.8 Any tree T has $\dim(P(T)) \leq 3$.

Proof. In other words, any poset $P(T)$ of a tree T has a size three realizer. We already know this result to be true when T is finite, since finite trees are planar and Schnyder [12] showed that $\dim(P(G)) \leq 3$ when G is planar. The following proof works equally well for finite and infinite trees.

We must specify the three linear extensions in our proposed realizer, and then check that any critical pair of types (i)-(v) gets reversed by at least one of these. For any tree T, draw T rooted, and impose a left-to-right ordering on each vertex’s children. We then create the order of $V(T)$ in L_1 based on a left-to-right depth-first search, but we add a vertex only at the last time the search passes through it. Therefore a vertex comes below all its descendants in the ordering of L_1. In other words, for $u, v \in V(T)$, we have $v > u$ in
L_1 if either (a) v is a descendant of u in T, or (b) if x is u and v’s lowest common ancestor in T, and y_u and y_v are x’s children which contain u and v, respectively, in their subtrees, then y_v is left of y_u in the ordering of x’s children within T. L_2 is constructed similarly, except that we apply a right-to-left depth-first search. L_3 is simply a top-down ordering, where the root is first, followed by all the root’s children, etc.; the order of vertices from within any given level of T is unimportant.

We now check that \{L_1, L_2, L_3\} is a realizer of $P(T)$ by checking that any critical pair of types (i)-(v) gets reversed by at least one of these linear extensions. Recall that, in order to reverse (u, vw), we must have $u > v, w$ in L_4.

(i) For critical pair (u, vw), v and w are descendants of u in T, and so $u > v, w$ in L_3.

(ii) For critical pair (u, vw), v and w are ancestors of u, and so are recorded after u in either of the searches defining L_1 and L_2; that is, $u > v, w$.

(iii) For critical pair (u, vw), let y_u be the child of v whose subtree contains u ($y_u \neq w$). If w is right of y_u in the ordering of v’s children within T, then $u \geq y_u > w > v$ in L_1; otherwise, w is left of y_u, and we see this ordering within L_2.

(iv) For critical pair (u, vw), let x be u and v’s lowest common ancestor, and y_u and y_v be the children of x whose subtrees contain u and vw, respectively. If y_v is right of y_u in the ordering of x’s children within T, then $u \geq y_u > w > v \geq y_v$ in L_1; otherwise, y_v is left of y_u, and we see this ordering within L_2.

(v) For critical pair (branch,leaf), we always see branch>leaf in L_3.

So \{L_1, L_2, L_3\} reverses every critical pair of $P(T)$, and we’re done. \(\square\)
Theorem 4.9 If T is an infinite tree of unbounded degree, then $\dim_f(P(T)) = 3$.

Proof. The previous Lemma establishes 3 as an upper bound. Now, another way of saying that T has unbounded degree is to say that, for every positive integer n, T has the n-star S_n as a subgraph. Suppose this is true for T. For fixed positive integer b, let $\dim_b(P(T)) = d$. Let $n = 2^d + 1$, and consider $S_n \subset T$ and any smallest b-fold realizer \mathcal{R} of $P(S_n)$. In each of the d linear extensions in \mathcal{R}, a leaf of S_n is either above or below the root (center), so for all of \mathcal{R}, we may describe this vertex’s position relative to the root by a length d binary sequence ($1=$above root, $0=$below root). There are only 2^d possible sequences, but $2^d + 1$ leaves. So by the pigeonhole principle, there must be two leaves u and v that have the same position relative to the root in every linear extension in \mathcal{R}. Well, $(r, u), (r, v), (u, rv)$ and (v, ru) are all critical pairs that must each be reversed b times by \mathcal{R}. To reverse (r, u) and (r, v), we must have b linear extensions where u and v are below r. To reverse (u, rv), we must have b linear extensions where $u > v > r$, and b more with $v > u > r$ to reverse (v, ru). These three sets of b linear extensions are necessarily disjoint, so we must have $d \geq 3b$. Thus

$$\dim_f(P(T)) = \lim_{b \to \infty} \frac{\dim_b(P(T))}{b} \geq \lim_{b \to \infty} \frac{\dim_b(P(S_n))}{b} \geq \lim_{b \to \infty} \frac{3b}{b} = 3.$$

Thus there is a gap in fractional dimension between posets of infinite trees with bounded and unbounded degree: the former is bounded above by $z_0 \approx 2.44504$, while the later is always 3. In particular, note that, while \dim_f of the poset of an infinite star is 3, \dim_f of the poset of any finite subgraph (finite star) is bounded above by $1 + \sqrt{2}$. This result is analogous to that of χ_f versus χ_f from Chapter 2, and in fact, the graph $G_{1,1}^2$ (for which
$\chi_f = 3$ and $\chi_f = 1 + \sqrt{2}$ was originally constructed based on this observation about posets.
5 Summary of Results and Open Problems

Chapter 2

In Chapter 2, for an infinite graph \(G \), we defined \(\overline{\chi_f}(G) \) to be the supremum of \(\chi_f \) of all of \(G \)’s finite subgraphs. Our results answer an open problem posed by Leader [8], and are as follows:

- For an infinite graph \(G \), \(\omega_f(G) = \overline{\chi_f}(G) \).

- For the class of graphs \(G_{r,s}^n \) with \(r, s \in Q_f \) and integer \(n \geq 2 \), \(\chi_f(G_{r,s}^n) = r + n s \) while \(\overline{\chi_f}(G_{r,s}^n) = r/p_0 \), where \(p_0 \) is the unique real root of \(rx^n + n sx - r = 0 \) in \((0, 1)\).

- The above class of graphs not only has the property that \(\overline{\chi_f} < \chi_f < \infty \), but along with the preceding result, demonstrates that \(\omega_f \) and \(\chi_f \) aren’t necessarily equal for infinite graphs.

While the class of graphs \(G_{r,s}^n \) and several simple extensions of it cover many possible values of the ordered pair \((\overline{\chi_f}, \chi_f)\), there are potentially many such values that are not achieved.

- Given any \(y > x > 2 \), does there exist an infinite graph \(G \) for which \((\overline{\chi_f}(G), \chi_f(G)) = (x, y)\)?

- The class of perfect graphs (for which \(\omega(G) = \chi(G) \)) is well studied. We could define the class of fractionally perfect infinite graphs to be those with \(\omega_f(G) = \)
\(\chi_f(G)\). Which, of course, poses the problem: Characterize the class of fractionally perfect infinite graphs.

Chapter 3

In Chapter 3, we took \(n \rightarrow (x, y)\) to mean that, if \(K_n = H_1 \oplus H_2\), then \(\omega_f(H_1) \geq x\) or \(\omega_f(H_2) \geq y\). We define \(r_f(x, y)\) to be the least integer for which this is true, and similarly define \(r_f(x_1, \ldots, x_p)\) as the extension from 2 to \(p\) colors. We then prove

- Let \(x = k + \varepsilon\) and \(y = l + \delta\) for integers \(k, l \geq 1\) and \(0 < \varepsilon, \delta \leq 1\), and let \(q = \min\{[\varepsilon l], [\delta k]\}\). Then \(r_f(x, y) = kl + q\). Contrast this with the intractability of exact value calculations and exponential growth rate of the ordinary Ramsey numbers.

- Given \(x_1, \ldots, x_p \geq 2\), we have the following recursive bound:

\[
r_f(x_1, \ldots, x_p) \leq \lfloor (r_f(x_1, \ldots, x_{p-1}) - 1)x_p \rfloor.
\]

We present several special cases where this upper bound actually gives the correct value of \(r_f\), most notably the previous case of \(p = 2\) and the case where all \(x_i\) are the same integer.

- We also briefly examine several similar generalizations of Ramsey numbers, including \(b\)-fold Ramsey numbers and Lovász-\(\theta\) Ramsey numbers.

The principle open problems are as follows:

- Prove or disprove Conjecture 3.4 that the recursive upper bound on \(r_f(x_1, \ldots, x - p)\) always gives the correct value.
There is much work that remains to be done on the subject of b-Ramsey numbers. In particular, $r_b(x, y)$ is, roughly, an increasing function of x and y (presumably exhibiting exponential growth) and a decreasing function of b (which almost everywhere approaches $r_f(x, y)$ pointwise from above, even though $r_f(x, y)$ only increases linearly in x or y).

Although we established that $r_\theta(x, y)$ is very near xy, it remains to determine an exact formula for this quantity as we did for $r_f(x, y)$.

Chapter 4

In Chapter 4, we examined the fractional dimension of posets of trees, and found the following:

- $1 + \sqrt{2}$ is the best possible upper bound on \dim_f of posets of finite stars\(^{31}\).
- $7/3$ is the best possible upper bound on \dim_f of posets of (finite or infinite) binary trees.
- ≈ 2.44504 (a root of $z^3 - 7z^2 + 14z - 7 = 0$) is the best possible upper bound on \dim_f of posets of trees (finite or infinite) with bounded maximum degree.
- For any infinite tree T with unbounded maximum degree, $\dim_f(P(T)) = 3$.

We still have the following open problems:

\(^{31}\)This result was previously observed by Brightwell and Scheinerman [2].
While $\frac{3q-3}{2q-1}$ is the best known upper bound on $\dim_f(P(T))$ for the class of q-ary trees for $q = 2, 3, 4, 5$, it is not, in general, best possible. What is the best-possible upper bound as a function of q? We do know that for $q = 2$ the value $7/3$ is correct, and that as $q \to \infty$ the value approaches 2.44504.

Brightwell and Scheinerman [2] proved that posets of finite graphs have $\dim_f = 3$ iff the graph contains a 3-cycle. And \dim_f of posets of trees is covered herein. This leaves the class of graphs with smallest cycle larger than size 3 unexplored. What can be said about \dim_f of the posets of these graphs?
A Appendix: Leftovers

A.1 χ_f of Lexicographic Products

Scheinerman and Ullman [11] present a proof that $\chi_f(G[H]) = \chi_f(G)\chi_f(H)$ for finite graphs by proving “\geq” and “\leq”, but one direction makes use of fractional clique number and the fact that $\chi_f = \omega_f$ for finite graphs. Since Chapter 2 shows us that this is not the case for infinite graphs, a new proof is needed in this case. The other direction only requires minor modification to accommodate infinite graphs, but we present both for completeness.

We use the fractional coloring notation developed in Chapter 2.

Lemma A.1 For any two graphs G and H, finite or infinite, $\chi_f(G[H]) = \chi_f(G)\chi_f(H)$.

Proof. First we need some additional notation. Given graphs G and H, let \mathcal{I}, \mathcal{J} and \mathcal{K} be the sets of independent sets of G, H and $G[H]$, respectively. Recall that, roughly, $G[H]$ is constructed by replacing each vertex of G with a copy of H. Then for $u \in V(G)$, let $u[H]$ be the copy of H put at u. For any $K \in \mathcal{K}$, let $K|_G = \{u \in V(G) : u[H] \cap K \neq \emptyset\}$, and note that $K|_G \in \mathcal{I}$. Finally, note that, for $I \in \mathcal{I}$ and $J \in \mathcal{J}$, we have $I \times J \in \mathcal{K}$.

Let f_G and f_H be fractional colorings of G and H, respectively. Then we may define the function $f = f_G \times f_H : \mathcal{K} \to [0, 1]$ by $f(I \times J) = f_G(I)f_H(J)$ and $f(K) = 0$ if $K \in \mathcal{K}$ cannot be written as any $I \times J$. Then for any $(u, v) \in V(G[H])$, we have

$$\sum_{K \in \mathcal{K}: (u, v) \in K} f(K) = \sum_{I \times J \in \mathcal{K}: (u, v) \in I \times J} f(I \times J)$$
and so \(f \) is itself a valid fractional coloring of \(G[H] \). Equations similar to the above with the sums taken over all \(I \times J \in \mathcal{K} \) show that \(w(f) = w(f_G)w(f_H) \). Since we can pick \(f_G \) and \(f_H \) with values arbitrarily close to \(\chi_f(G) \) and \(\chi_f(H) \), respectively, we can construct fractional colorings of \(G[H] \) with values arbitrarily close to \(\chi_f(G)\chi_f(H) \), and so \(\chi_f(G[H]) \leq \chi_f(G)\chi_f(H) \).

Next, suppose that \(f \) is a fractional coloring of \(G[H] \) with value \(w(f) < \chi_f(G)\chi_f(H) \). For \(u \in V(G) \), let \(w_u(f) = \sum f(K) \), summed over all \(K \in \mathcal{K} \) which intersect \(u[H] \), so that \(f \) puts total weight \(w_u(f) \) on \(u[H] \). Now, \(u[H] \) is a copy of \(H \), and \(f \) restricted to the independent sets intersecting \(u[H] \) is still a fractional coloring of \(u[H] \), so we must have \(w_u(f) \geq \chi_f(H) \) for all \(u \in V(G) \). Next, if we collapse each \(u[H] \) into a single vertex \(u \) (giving us \(G \)), any \(K \in \mathcal{K} \) collapses to some \(I \in \mathcal{I} \); specifically, \(K \) becomes \(K|_G \). We set

\[
f_G(I) = \frac{1}{\chi_f(H)} \sum_{K} f(K|_G),
\]

so that \(w(f_G) = w(f)/\chi_f(H) \). Since \(f \) put weight at least \(\chi_f(H) \) on each \(u[H] \), \(f_G \) must put weight at least 1 on each \(u \in V(G) \), and so is a valid fractional coloring of \(G \) with weight

\[
\frac{w(f)}{\chi_f(H)} < \frac{\chi_f(G)\chi_f(H)}{\chi_f(H)} = \chi_f(G).
\]

This is a contradiction. Thus no fractional coloring of $G[H]$ can have weight less than $\chi_f(G)\chi_f(H)$, and we are done. □

A.2 $\omega_f(G) = \lim_{b \to \infty} \frac{\omega_b(G)}{b}$ for Infinite Graphs

In fact, the following Theorem and proof also apply to finite graphs, but the result is already known in that case (see [11]).

So that we may discuss $\omega_b(G)$ of infinite graphs, we use its formulation as the size of the largest multiset of $V(G)$ with the property that no independent set of G contains more than b elements from this multiset (counting repetition). A b-fold clique is any multiset of $V(G)$ which satisfies this property.

Theorem A.2 For any finite or infinite graph G,

$$\lim_{b \to \infty} \frac{\omega_b(G)}{b} = \omega_f(G).$$

Proof. We take ω_f as defined in Chapter 2. Analogously to Lemma 1.1 and Theorem 2.1, we may divide any b-fold clique by b to get a fractional clique. However, since ω_f is formulated as a maximization problem, $\omega \leq \omega_b/b \leq \omega_f$, and so $\lim_{b \to \infty} \frac{\omega_b(G)}{b} \leq \omega_f(G)$.

The other inequality also proceeds much like the proof of Theorem 2.1, but with fewer complications. For any (finite or infinite) graph G, fix $\varepsilon > 0$. Then let g be a fractional clique with $\omega_f(G) - \varepsilon/3 \leq w(g) \leq \omega_f(G)$. Since $w(g)$ is the (possibly infinite) sum of the weights put on vertices by g, there are finite partial sums with values arbitrarily close to $w(g)$. In particular, choose a finite set $S \subseteq V(G)$ such that $\sum_{v \in S} g(v) \geq w(g) - \varepsilon/3 \geq \omega_f(G) - 2\varepsilon/3$, and let $g' : V(G) \to [0, 1]$ equal g on the set S and be zero elsewhere, so
that $w(g') = \sum_{v \in S} g(v)$. Since g' can’t put more weight on the vertices of an independent set than g, it is also a fractional clique. Finally, take $b \geq (3|S|)/\varepsilon$, and create g'' by rounding all values $g'(v)$ down to the nearest multiple of $1/b$. This removes total weight at most $|S|/b \leq \varepsilon/3$ from g', and still leaves g'' a valid fractional clique, which has weight $w(g'') \geq w(g') - \varepsilon/3 \geq \omega_f(G) - \varepsilon$. We may now define the b-fold clique g_b to be the multiset of $V(G)$ where each vertex v is included $b \cdot g''(v)$ times. This multiset is a valid b-fold clique since no independent set can contain more than b of these elements (counting repetition). So the weight (size) of g_b is a lower bound on $\omega_b(G)$, and

$$\frac{\omega_b(G)}{b} \geq \frac{|g_b|}{b} = w(g'') \geq \omega_f(G) - \varepsilon.$$

Since this is true of any $b \geq (3|S|)/\varepsilon$, it is clear that $\omega_b(G)/b$ actually approaches $\omega_f(G)$ in the limit. ☐
Bibliography

Vita

Gregory Matthew Levin was born on July 2nd, 1970 in Inglewood, CA to Michael and Tommy Kay Levin. Even though he spent his first 18 years in Hermosa Beach, he never learned to surf. He attended Hermosa View Elementary School, Hermosa Valley Middle School, and Redondo Union High School, where he was valedictorian. An amusing “Junk Mail Flyer” led him to Harvey Mudd College in Claremont, CA, where he learned to juggle (but not very well), play Tron (exceedingly well) and manage student arts publications (well, sort of manage). He also developed an interest in Discrete Math and Optimization working under his advisor, Prof. Arthur Benjamin. In May of 1992, he received his Bachelor’s of Science in Mathematics, graduating with distinction. He spent the next five years in the Mathematical Sciences department at The Johns Hopkins University, where he received the Abel Wolman and Rufus Isaacs Graduate Fellowships. His advisor, Prof. Edward Scheinerman, introduced him to the field of Fractional Graph Theory, which became the focus of his graduate research. The material in this dissertation was also prepared for three journal papers:

- The Fractional Chromatic Gap of Infinite Graphs, submitted.

- The Fractional Dimension of Posets of Trees, in preparation.

He also presented some of this work at The 1995 Southeastern Conference on Combinatorics, Graph Theory and Computing. He successfully defended this dissertation on June
5, 1997, and in so doing completed his Ph.D. in Mathematical Sciences. He is currently living in fear of having to get a real job.