Section 1.4: Directed Graphs

Definitions and Examples, Vertex Degrees, Eulerian Digraphs, Orientations and Tournaments
Eulerian Digraphs

Definition (1.4.22). A digraph is Eulerian if it has an Eulerian circuit.

Lemma (1.4.23). If G is a digraph with $\delta^+(G) \geq 1$, then G contains a cycle. The same conclusion holds when $\delta^-(G) \geq 1$.

Theorem (1.4.24). A digraph is Eulerian if and only if $d^+(v) = d^-(v)$ for each vertex v and the underlying graph has at most one component.

Proof. (sketch) Necessity is clear, so we need only show sufficiency. To do this, first prove that every non-extendible trail in the graph is closed. Then show that a trail of maximal length must be an Eulerian circuit.
de Bruijn Graph

Is there a cyclic arrangement of 2^n binary digits such that the 2^n strings of n consecutive digits are all distinct?

Example. When $n = 4$, the following sequence works:

$$(0000111101100101).$$

Let D_n be the digraph whose vertices are the binary $(n−1)$-tuples and where there is an edge from a to b if the last $n−2$ entries of a agree with the first $n−2$ entries of b.

To help us construct the cyclic arrangement described above, we label each edge from a to b with the last entry of b.
Theorem (1.4.26). The digraph D_n is Eulerian. Furthermore, the edge labels on the edges in any Eulerian circuit of D_n form a cyclic arrangement in which the 2^n consecutive segments of length n are distinct.

Proof. (sketch) First show that every vertex has indegree 2 and outdegree 2. Then show that D_n is strongly connected. Theorem 1.4.24 then implies that D_n is Eulerian.

For the second statement, let C be an Eulerian circuit of D_n. Then show that each of the 2^n consecutive segments of length n described above correspond uniquely to an edge of D_n as we traverse C. Note that each segment a_1, \ldots, a_n corresponds to a vertex (a_1, \ldots, a_{n-1}) and the edge labeled a_n that is leaving that vertex.
Orientations and Tournaments

Definition (1.4.27). An orientation of a graph G is a digraph D obtained from G by choosing an orientation for each edge $xy \in E(G)$. An oriented graph is an orientation of a simple graph. A tournament is an orientation of a complete graph.

Definition (1.4.29). In a digraph, a king is a vertex from which every vertex is reachable by a path of length at most 2.

Proposition (1.4.30). (Landau [1953]) Every tournament has a king.

Proof. Let x be a vertex of maximum outdegree in the tournament T, and suppose x is not a king. Then there exists a vertex y that is not reachable from x by a path of length at most 2. Every successor of x must therefore be a successor of y, implying that $d^+(y) > d^+(x)$ (since $y \to x$). But this contradicts the fact that x has maximum outdegree. Thus, x must be a king. \qed
Exercises

1.4.7. (–) Prove or disprove: If D is an orientation of a simple graph with 10 vertices, then the vertices of D cannot have distinct outdegrees.

1.4.8. (–) Prove that there is an n-vertex tournament with indegree equal to outdegree at every vertex if and only if n is odd.

1.4.36(a-b). Let T be a tournament having no vertex with indegree 0. Prove that if x is a king in T, then T has another king in $N^-(x)$. Use this result to then show that T has at least three kings.