Section 6.5: The Kernel and Range of a Linear Transformation
In this section, we extend the important notions of null space, column space, rank, and nullity for matrix-vector multiplication to the general setting of linear transformations.

Definition

Let $T : V \rightarrow W$ be a linear transformation. The **kernel** of T is

$$\ker(T) = \{ v \in V \mid T(v) = 0 \}.$$

The **range** of T is

$$\text{range}(T) = \{ T(v) \mid v \in V \}.$$

Example

Example
Theorem 6.18
Let \(T : V \rightarrow W \) be a linear transformation.

1. The kernel of \(T \) is a subspace of \(V \).
2. The range of \(T \) is a subspace of \(W \).

Definition
Let \(T : V \rightarrow W \) be a linear transformation. The \textbf{rank} of \(T \), which we denote by \(\text{rank}(T) \), is the dimension of the range of \(T \). The \textbf{nullity} of \(T \), which we denote by \(\text{nullity}(T) \), is the dimension of the kernel of \(T \).
Theorem 6.19 (The Rank Theorem)

Let V be a finite dimensional vector space, and let $T : V \to W$ be a linear transformation. Then

$$\text{rank}(T) + \text{nullity}(T) = \dim V.$$
Definition (one-to-one, onto)

A linear transformation \(T : V \rightarrow W \) is **one-to-one** if it maps distinct vectors in \(V \) to distinct vectors in \(W \). If \(\text{range}(T) = W \), then we say \(T \) is **onto**.

Question

Can you find examples of linear transformations that are (1) one-to-one but not onto, (2) onto but not one-to-one, (3) one-to-one and onto, and (4) neither one-to-one nor onto?

Answer
Theorem 6.20
A linear transformation $T : V \to W$ is one-to-one if and only if $\ker(T) = \{0\}$.

Theorem 6.21
Let V and W be finite-dimensional vector spaces such that $\dim V = \dim W$. Then a linear transformation $T : V \to W$ is one-to-one if and only if it is onto.
Theorem 6.22

Let $T : V \to W$ be a one-to-one linear transformation. If $S = \{v_1, \ldots, v_k\}$ is a linearly independent subset of V, then $T(S) = \{T(v_1), \ldots, T(v_k)\}$ is a linearly independent subset of W.

Corollary 6.23

Let $\dim V = \dim W = n$. Then a one-to-one linear transformation $T : V \to W$ maps a basis of V to a basis of W.
Theorem 6.24
A linear transformation $T : V \to W$ is invertible if and only if it is one-to-one and onto.

Definition (isomorphism)
A linear transformation $T : V \to W$ is called an isomorphism if it is one-to-one and onto. If there exists an isomorphism from V to W, we say that V is isomorphic to W and write $V \cong W$.

Theorem 6.25
Two finite-dimensional vector spaces are isomorphic if and only if they have the same dimension.