READ Problem D. Let \(u \) be an upper bound of non-empty set \(A \) in \(\mathbb{R} \). Prove that \(u \) is the supremum of \(A \) if and only if for all \(\epsilon > 0 \) there is an \(a \in A \) such that \(u - \epsilon < a \).

Note that to show that “\(S \) if and only if \(T \)” you must show that \(S \) implies \(T \), and \(T \) implies \(S \).

READ Problem E. Let \(A, B \) be nonempty subsets of \(\mathbb{R} \) that are bounded above, and let \(A + B = \{a + b : a \in A, b \in B\} \). Show that
\[
\sup(A + B) = \sup A + \sup B.
\]

Problem F. Let \(A, B \) be nonempty subsets of positive real numbers that are bounded above, and let \(A \cdot B = \{ab : a \in A, b \in B\} \). Show that
\[
\sup(A \cdot B) = \sup A \cdot \sup B.
\]

Problem G. (a) Let \(A \) be a nonempty subset of \(\mathbb{R} \) and suppose that \(s = \sup A \) belongs to \(A \). If \(b \) is not in \(A \), show that \(\sup(A \cup \{b\}) \) is equal to the larger of the two numbers \(s \) and \(b \).

(b) Use this to show that a nonempty finite set \(A \) contains its supremum. [Hint—use induction: show it is true first for a one-element set, then show that if it is true for an \(n \)-element set then it must be true for an \((n + 1) \)-element set.]

Do also Chapter 1 (6ab, 6cd, 12, R13, 15).

Comment: When you are asked a question, e.g., problem 1.15, you should always give justification.