20.2: Stokes’ Theorem

Stokes’ Theorem: Suppose that S is a smooth oriented surface, with oriented boundary C, and \vec{F} is a vector field defined in S. Then

$$\int_C \vec{F} \cdot d\vec{r} = \int_S \text{curl} \vec{F} \, dA.$$

That is, the circulation of \vec{F} around the curve C is the same as the integral over the surface S of the curl of \vec{F}.

Problem 1. Compute the following flux integral in two ways, 1. directly from the definition and 2. using Stokes’ theorem:

$$\int_C \vec{F} \cdot d\vec{r},$$

where $\vec{F} = (x+z)\vec{i} + x\vec{j} + y\vec{k}$ and C is the upper half of the circle $x^2 + z^2 = 9$ in the plane $y = 0$, together with the x-axis from $(3, 0, 0)$ to $(-3, 0, 0)$, traversed counterclockwise.

Problem 2. The figure below shows an open cylindrical can, S, standing on the xy-plane. (S has a bottom and sides, but no top.)

(a) Give equation(s) for the rim, C.

(b) If S is oriented outward and downward, find $\int_S \text{curl}(-y\vec{i} + x\vec{j} + z\vec{k}) \cdot d\vec{A}$.

![Diagram of a cylindrical can with equation $x^2 + y^2 = 9$ and direction of circulation]
Problem 3. Evaluate the circulation of \(\vec{G} = xy\vec{i} + z\vec{j} + 3y\vec{k} \) around a square of side 6, centered at the origin, lying in the \(yz \)-plane, and oriented counterclockwise viewed from the positive \(x \)-axis.

Problem 4. Find curl\((x^3\vec{i} + \sin(y^3)\vec{j} + e^{z^3}\vec{k})\). What can you say about \(\int_C (x^3\vec{i} + \sin(y^3)\vec{j} + e^{z^3}\vec{k}) \cdot d\vec{r} \) for any closed curve \(C \)?

Challenge Problem 1. Let \(f(x, y, z) \) and \(g(x, y, z) \) be two functions and let \(C \) be any loop (closed curve) in 3d. Show that
\[
\int_C (g \text{ grad } f + f \text{ grad } g) \cdot d\vec{r} = 0
\]
in two ways: 1) using the fundamental theorem for line integrals and 2) using Stokes’ theorem.